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 • For quantitative investors, machine learning (ML) represents an important expansion of the analytical  

toolkit, providing substantial new flexibility. It has application throughout the investment process.

 • ML represents an evolution rather than a revolution. For the foreseeable future, finance domain knowledge 

will remain essential in its application. 

 • ML’s increased flexibility demands the embrace of a disciplined research process. For asset owners, the 

combination of additional flexibility plus the opacity of some ML methods increases the challenge of 

distinguishing true added value from overfit, data-mined results.

As a society, we’ve become preoccupied with “the rise 

of machines”; the topic taps into some of the greatest 

hopes and fears of our digital age. In the financial 

world, though, the breathless and superficial nature 

of the broader cultural dialogue around it has clouded 

understanding as to what actual impact artificial 

intelligence, machine learning, and the explosion of data 

will have over the foreseeable future. 

In this note, we ground the discussion by laying 

out our view as to how ML will reshape quantitative 

investing over the next few years. We contextualize ML 

approaches relative to traditional methods, considering 

their salient characteristics, principal advantages, and 

scope of application as well as challenges to their further 

integration. To provide a real-world sense of what it 

means to apply ML in quant investing, we present a  

brief case study involving the enhancement of a stock-

selection signal.

In summary, ML significantly expands the analytical 

toolkit for sophisticated quantitative investors. We 

believe that it already is generating material additional 

value and will deliver more. ML has application 

throughout the investment process, including non-

linear forecasting, revealing structure in complex data, 

and derivation of quantitative metrics from qualitative 

information. But the application of ML to investing is 

more challenging than in many other contexts. As a 

result, financial domain knowledge and a rigorous and 

explicit research process will be essential for sustained 

success. Awareness of these considerations will help 

asset owners to distinguish true value-add from naive 

data mining.

ML IN CONTEXT
Artificial intelligence represents a broad goal: 

development of machines that make decisions at  

least as well as humans. Machine learning is an  

approach to achieving that objective: data-driven 

computer applications that train themselves 

to complete complex tasks without explicit 

instruction. (See the Appendix for a primer on 

three popular machine learning approaches.)

AI and ML concepts and methods are not 

new, and attempts to apply them to investing date back 

decades. In the 1990s, for example, numerous academic 

articles extolled the promise of neural networks to 

forecast stocks, currencies, and financial events.1

Today, the intense focus on ML reflects the 

confluence of several trends. First, many ML methods 

are computationally intensive, and computing costs 

have dropped dramatically. Commoditization of 

cloud computing has made thousands of processors 

available on-demand. Second, ML algorithms are now 

freely available in robust and well-documented open-

source packages, dramatically lowering cost, time, 

and knowledge barriers to implementation. Third, 
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1  As just a few examples: Jingtao Yao, and Chew Lim Tam, “Neural Networks for Technical Analysis: A Study on KLCI,” International Journal of Theoretical 
and Applied Finance 2, no. 2 (1999); Mary Malliaris and Linda Saichenberger, “Using Neural Networks to Forecast the S&P 100 Implied Volatility,” 
Neurocomputing 10, no. 2 (1996): 183-195; Christian Haefke and Christian Helmenstein, “Forecasting Austrian IPOs: An Application of Linear and Neural 
Network Error-Correction Models,” Journal of Forecasting 15, no. 3 (1996): 237-251.
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For institutional investor use only. Not to be reproduced or disseminated.
2

the explosion of big data facilitates ML approaches 

that involve algorithms with hundreds or thousands 

of parameters to estimate, and that therefore require 

enormous quantities of data to train. Finally, there have 

been algorithmic breakthroughs, including in language 

processing and the development of better behaved and 

more computationally efficient neural networks.

In the context of quant investing, interest in ML 

reflects desire for greater modeling flexibility in two 

broad respects. The first is non-linear prediction. ML 

algorithms are designed to infer the relationship between 

data attributes and a variable of interest. In contrast, 

ubiquitous linear regressions impose an assumption that 

the form of the relationship is a straight line. Although 

linear models have endured for a host of good reasons, 

including simplicity, transparency, robustness, and 

modest data requirements, in many investing contexts 

the assumption of linearity is unfounded, and neither 

theory nor intuition suggests a particular alternative. 

Examples include forecasting probabilities of market 

events or economic regime shifts.2 

A second motivation for ML is to reveal hidden 

structure in complex, large data sets. In identifying 

a company’s peer group, for example, ML algorithms 

may help to illuminate the economic relationships 

among hundreds of firms, simultaneously accounting 

for numerous attributes. ML can also help to expose 

interactions between predictive variables that may  

vary with environmental conditions. ML-based textual 

analysis can derive quantitative metrics from  

qualitative information, sentiment analysis being a 

prominent example.

ML techniques represent a significant expansion 

of the quantitative investor’s toolkit, but they’re not 

qualitatively distinct from traditional statistical methods. 

Linear regression, for example, can be expressed as 

a simple neural network. Elements of ML algorithms 

to identify the most valuable predictive variables and 

to avoid overfitting have analogues in conventional 

statistical methods. As a result, trying to identify a 

meaningful bright-line demarking traditional approaches 

form ML would be a fruitless exercise. Fortunately, it’s 

also not important. 

Of great consequence, however, are the implications 

of easy access to more flexible but also more opaque 

analytical tools. For quantitative investment managers, 

it opens new avenues of research that have genuinely 

exciting potential. Yet their enduringly successful 

exploitation will demand considerable effort and firm 

commitment to a disciplined research process. And while 

ML methods require new skill sets, domain knowledge 

from finance will remain crucial to beneficial research.

For asset owners, the increased modeling flexibility 

will exacerbate challenges in manager and strategy 

selection. Finance is already rife with sloppy data mining, 

and access to a more expansive toolkit only makes it 

easier. Further, the opacity of some ML approaches 

will complicate performance attribution even when 

such techniques are implemented appropriately. As a 

“canary in the coal mine” regarding such challenges, 

the data science literature is already replete with claims 

of unrealistic market forecasting ability. In this evolving 

environment, a working knowledge of ML techniques and 

research best practices will help to protect asset owners. 

AN ML CASE STUDY
To demonstrate the application of ML to quant investing, 

we present a case study in the enhancement of a 

stock-selection signal. In a 2002 paper, Joseph Piotroski 

proposed an approach to improve valuation factors 

for bottom-up stock picking.3 The premise was 

that conditioning on indicators of a company’s 

fundamental strength can help to distinguish 

attractively undervalued stocks from value 

traps. Today, the general concept of employing 

quality variables to help identify underpriced 

fundamentals is well established. Nevertheless, 

Piotroski’s framework is worth revisiting as an 

intuitive, real-world setting in which to highlight 

motivations for applying ML and to elucidate the ML 

research process. 

To test his hypothesis, Piotroski formed a composite 

indicator, which he called the “F-score.” (Figure 1) This 

was constructed from nine individual financial statement 

metrics chosen to reflect 1) profitability, 2) leverage, 

liquidity, and source of funding, and 3) operating 

efficiency. To put the data items on an equal footing so 

that they could be combined, Piotroski took a sensible 

and robust approach. For each attribute, he created 

a binary variable, assigning a 1 if the attribute were 

positive and 0 if negative. For each stock on each date, he 

then summed the binary variables to create the baseline 

F-score signal.4 Exemplifying the signal’s intuition, 

Figure 2 shows that Sears Holdings’ F-score captured 

a protracted deterioration in the company’s financial 

strength in the years prior to its bankruptcy.

2 Probabilities are bounded by 0 and 1. Linear dependence on a predictor variable that can take on any value would violate those bounds.
3  Joseph R. Piotroski, Value Investing: The Use of Historical Financial Statement Information to Separate Winners from Losers, January 2002.
4 For our analysis, we subject the his baseline F-score implementation and an ML to various proprietary adjustments.

For quantitative investment managers, 
it opens new avenues of research that 
have genuinely exciting potential. Yet 
their enduringly successful exploitation 
will demand considerable effort and firm 
commitment to a disciplined research 
process.
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FIGURE 1: CREATING THE “F-SCORE”

For illustrative purposes only.  Not a recommendation to buy or sell a specific security. Source: Piotroski 2002.

FIGURE 2: SEARS HOLDINGS’  F-SCORE

Source: Acadian. For illustrative purposes only. F-Score is calculated based on the methodology described in “An ML Case Study” as applied to Sears Holding 
Corp. The selected stock is intended as an example of a process and is not a recommendation to buy or sell any specific security.  Past results are not indicative 
of future results.  Every investment program has an opportunity for loss as well as profit.  

WHY ML?
This is an appealing setting in which to apply ML for 

several reasons. First, we have intuition that the selected 

financial characteristics may help return forecasting 

capabilities; this isn’t an uninformed fishing expedition 

in a low signal-to-noise-ratio environment. Second, 

although reducing the individual financial attributes to 

binary variables and then summing them is intuitive 

and transparent, we have no reason to think that it fully 

exploits their predictive value. Third, there is no theory or 

intuition to suggest how we should combine the individual 

quality metrics, e.g., whether to accord each equal weight 

or whether the predictors interact. Fourth, we don’t know 

what the relationships between F-score components and 

future returns look like; they may be unequal and/or highly 

non-linear.

SPECIFYING AN ML APPROACH
To develop and evaluate an ML-based alternative signal, 

we follow a research process that has three interrelated 

elements:

 • Data preparation: We must decide what data inputs 

to feed into the machine. This involves: 1) selection 

of candidate predictive variables (“features”), 2) data 

preprocessing, i.e., cleaning and integration, and 3) 

transformations of the raw data, e.g., market or peer 

group adjustments and normalizations. For this case 

study, we work with Piotroski’s selected attributes.5 

Preprocessing includes treatment of missing and 

outlier predictor values, exclusion of financials,  

and a filter for tradability. We also market-adjust 

stock returns. 
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 • Algorithm selection: For this exercise, we choose 

an approach called “random forest.” In data science 

circles, this method is considered a solid, general 

purpose algorithm. It’s relatively easy to implement, 

generally effective and robust, and reasonably 

transparent.

By way of high-level description, the random forest 

algorithm is based on generating many “decision 

trees” fitted to historical data. An individual decision 

tree, an illustrative example of which is shown in 

Figure 3, represents a sequence of simple forecasting 

rules each of which, in the case study, relates an 

individual accounting variable to future returns. 

Specifically, at each decision point in the tree, called 

a node, the algorithm subdivides the training data 

into two groups of observations based on the value 

of one attribute. The algorithm selects the attribute 

on which to split the sample so as to most effectively 

discriminate between higher and lower future returns 

in the training sample. Not every variable may appear 

in a tree; i.e., the algorithm may find that certain 

attributes don’t have predictive power, and a variable 

may appear several times, associating its different 

levels with a range of predicted returns. (See the 

Appendix for further discussion of decision trees.) 

In a “random forest” implementation, we generate 

many trees, fitting each one from a random subset 

of the historical data. The purpose is to reduce the 

risk of overfitting associated with estimating just 

a single tree, which might be driven by spurious 

relationships in the full sample. We generate the final 

return forecast for new, out-of-sample observations 

by averaging return forecasts across all the fitted 

trees. For the case study, we estimated between 

300 and 3,000 trees per forest in various candidate 

implementations.

 • Data sample management: Implementing an 

ML algorithm typically involves subdividing 

the historical dataset into three segments: 1) a 

“training” sample to estimate algorithm parameters, 

2) a “validation” sample to tune the algorithm and/

or select among several variants, and 3) “out-of-

sample” historical data to evaluate the approach. 

For this case study, we used the validation step to 

choose the maximum number of nodes in the decision 

tree (tree “depth”) and other criteria to limit the 

branching process. The purpose of these restrictions 

is to avoid overfitting and reduce sensitivity to 

outliers. We trained and validated the random forest 

algorithm based on data from 2000-2012, and we ran 

it out-of-sample from 2013-2018. We restricted tree 

depth to 3 levels.

FIGURE 3: SAMPLE DECISION TREE

Source: Acadian. Diagram illustrates the results of fitting a single tree in a random forest implementation as described in “An ML Case Study.” For illustrative 
purposes only. 

RESULTS
Figure 4 compares the predictive efficacy of the baseline 

and ML-based F-score signals in a broad universe of 

developed market stocks from 2013-2018. The table  

shows that the ML-based version displays greater  

efficacy in predicting stocks’ 1-month-ahead returns, as 

evidenced by a higher slope coefficient (9.4bp/month 

versus 6.2bp/month). Its predictive ability is highly 

statistically significant (t-stat of 3.7 versus 2.3 for the 

baseline version).6 
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ROA ≤ -14.2

ΔROA ≤ -16.9ΔLev < -0.066
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91.7%5.2%2.0%

1.0%

0.70

2.0%

0.9%

0.67

22.9%

0.26

68.8%

-2.63 -0.18-1.60
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Figure 3

6   Each coefficient represents a time series average of cross-sectional regression slopes, i.e., a Fama-Macbeth analysis. The ML coefficient of 9.4 indicates that 
an ML_F-score that is one standard deviation above (below) the cross-sectional average is associated with an increase (decrease) in 1-month ahead returns of 
9.4 bp. These results are not investible. The analysis does not include transaction costs or trading frictions.
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FIGURE 4: EFFICACY COMPARISON – BASELINE F-SCORE VS. ML F-SCORE
Developed market companies, Jan. 2013 – Dec. 2018

Source: Acadian. For illustrative purposes only. Chart shows sum of slope coefficients from  monthly cross sectional regressions of one month ahead stock 
returns on vanilla and machine learning-based F-score formulations using Acadian’s developed market universe restricted to non-financial companies market 
capitalizations above $100mm USD.  Regression results do not reflect trading, borrow costs, and other implementation frictions. For these and other reasons, 
they do not reflect performance of an investible strategy nor are they indicative of actual future results. Every investment program has the opportunity for loss as 
well as profit.

Analysis of individual trees within the random forest 

reveals that the forecasts are primarily driven by cash 

flow from operations followed by the change in return on 

assets, whereas change in gross margin, current ratio and 

leverage have limited influence.  This variation contrasts 

meaningfully with the baseline F-score’s implicit equal-

weighting scheme across the nine attributes. Interestingly, 

even though the ML formulation is materially driven by 

cashflow from operations, its direct correlation is modest.  

This likely reflects the non-linear nature of decision trees 

and, consequently, the random forest itself.  As well, the ML 

F-score signal has a fairly long workout horizon and high 

serial correlation, which suggest that it wouldn’t induce 

excessive turnover.

OPPORTUNITIES AND CHALLENGES
ML’s added flexibility has application throughout the 

investment process. Motivations for the case study  

help to explain why certain contexts make for promising 

use-cases, and special challenges in applying ML to a 

market context help to explain why some uses-cases hold 

less appeal.

Generation of new quant data inputs: ML is already 

extensively used to create alternative data sets, 

with language processing of news, filings, and social 

media among prominent examples. Contemporary 

applications include sentiment measurement, event 

detection, and evaluation of qualitative relationships 

and risks. Inferring context in unstructured, long-form 

text remains a challenge, and this use-case is helping 

to drive development of deep learning methods. Data 

imputation is another area well-suited to ML. Examples 

in the context of company fundamentals would include 

detecting errors and estimating missing or late-reported 

data items. ML techniques may be able to exploit 

underlying accounting logic or management behaviors 

that generate subtle, predictable patterns in the data.

Returns forecasting: ML has broad potential in 

forecasting. Examples include enhancement of technical 

signals (i.e., signals related to historical patterns in 

returns), where flexible ML-based prediction can better 

exploit richness in the data than prior generations 

of indicators that traded off informational nuance for 

robustness. As well, ML is already incorporated into 

sophisticated cross-asset technical signals to help 

identify subtle linkages among securities. 

But history is littered with forgotten academic 

articles and dead weblinks that chronicle persistently 

unrealistic expectations among methodologically 

sophisticated but market-naive data miners. When 

working in financial markets, ML researchers must 

recognize that the signal to noise ratio is lower and  

the data-generating environment more unstable than  

in many other contexts in which such methods are 

being applied.

Risk forecasting: There is no consensus as to the form 

of the underlying process driving financial market 

volatility despite decades of empirical research. 

Innumerable complex statistical models have been 

proposed to describe and predict its dynamics, 

including “jumps” and “regime shifts.” In this context, 

the gap between past statistical approaches and ML 

seems particularly indistinct. At the portfolio level, 

evaluating and forecasting risk depends on capturing 

the comovement among the component instruments. 

The task usually involves some form of “dimensional 

reduction,” i.e., identifying common drivers of returns, 

a natural context for the application of “unsupervised” 
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learning algorithms.7 ML also has application in 

predicting risk events, a setting that motivates non-

linearity and where training datasets of past events 

usually are easy to construct.

Factor weighting: Shifting factor exposures as 

macroeconomic and risk conditions evolve is oft-cited 

as an area of potential ML benefit. The premise being 

that flexible analytical approaches may be able to 

detect market regime shifts and adapt weightings 

appropriately. This use-case presents challenges, 

however. Among them, we may not have observed 

enough relevant historical transitions between states 

to train data-hungry algorithms, and investors may be 

particularly uncomfortable with reduced transparency 

during periods of market stress.

Implementation: ML has achieved comparatively wide 

use in high frequency trading in part because there 

is an enormous amount of intraday data that can be 

used to train execution algorithms. As well, in an era of 

market fragmentation, optimal choice of venue, method, 

and timing likely depends on many conditioning factors, 

including expected volumes and order flow, upcoming 

events, and sentiment. Optimizing over this large and 

complex set of inputs is a task well-suited to inductive 

ML processes. 

BEST PRACTICES
In identifying promising ML applications, the nature of  

the variable being forecasted and availability of historical 

data emerge as consistent themes. In many investing 

contexts, the low signal-to-noise ratio and relative 

scarcity of training data imply that blindly unleashed ML 

algorithms are prone to overfitting, i.e., picking up on 

spurious relationships in training data that are of no use in 

forecasting out-of-sample. 

While finance has long been rife with sloppy and 

abusive data mining, we expect that ML’s flexibility  

and opacity will increase its prevalence. For asset  

owners this will exacerbate challenges in distinguishing 

value-added approaches from artifacts of backtesting and 

slick presentation.

This concern informs a set of best practices to watch 

for in ML’s application to investing. It should be guided 

by understanding of a specific problem, and algorithms 

must be carefully controlled and validated to have out-of-

sample efficacy. ML is generally applied for data mining 

rather than hypothesis testing, i.e., with the objective of 

maximizing predictive power rather than providing insight. 

With that frame of reference in mind, the research process 

outlined in the case study is expressly designed to provide 

“guardrails” that reduce the risk of overfitting. 

Investment expertise will remain crucial to beneficial 

ML research. Decisions regarding data preparation, 

algorithm selection, and data sample management  

are interdependent, and investment domain knowledge 

informs them. As one example, judicious data preparation 

reduces the amount of data required for training and 

validation. Relying on ML to derive a peer-relative 

transformation likely would require an extremely  

flexible and data intensive algorithm and increase the  

risk of overfitting.

Because overfitting is such a prominent concern, 

overreaction to that risk may lead to underfitting. 

Techniques designed to reduce fitting noise can result  

in losing a signal altogether. While need for transparency 

should influence the decision to apply ML as well as 

algorithm selection, concern about complexity and opacity 

may lead to excessive caution in ML’s application.

While understanding the drivers of algorithm behavior 

can be a challenge, even in the context of complex ML 

methods we may nevertheless have means to gain insight. 

For a decision tree, inspecting early branches reveals 

which features the algorithm deems most predictively 

valuable, and, as we demonstrated in the case study, 

we can derive summary statistics of relative feature 

importance. For a neural network, the first “hidden layer” 

of nodes may serve as a feature-identification step, filtering 

and combining raw inputs into more refined items that are 

then passed deeper into the system. We may also be able 

to assess an algorithm’s likely response to circumstances of 

special interest by feeding it contrived data. 

As well, many longstanding research best practices 

remain applicable to ML contexts. These include 

comparing an ML-based forecaster’s behavior to simpler, 

more transparent signals, analyzing whether it loads 

on known risk factors, and examining whether its serial 

correlation and workout horizon suggest that it will induce 

portfolio instability and high turnover. Integration of ML 

doesn’t necessarily turn the investment process into an 

impenetrable black box.

CONCLUSION: THE OUTLOOK
ML is already a part of sophisticated quants’ investing 

toolkit. It offers valuable modeling flexibility and has 

application throughout the investment process. We view 

the integration of ML into investing as an evolution rather 

than a revolution. The techniques aren’t qualitatively 

distinct from traditional methods, and we expect that the 

quantitative investment process will remain recognizable 

in the foreseeable future, even as the research tools 

that inform its components evolve. Markets make for an 

especially challenging environment in which to apply 

ML, and beneficial ML-based research calls for process 

discipline and finance domain knowledge. For asset 

owners, more flexible but more opaque analytical tools  

will exacerbate challenges in distinguishing strategies  

that add value from data artifact. Working knowledge of 

ML approaches and ML research best practices offer a 

valuable defense.

7   In “unsupervised learning” no specific target variable is predicted. Often the goal is to group or infer patterns in input data.
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APPENDIX
ML METHODS: A PRIMER FOR INVESTING PRACTITIONERS
This Appendix provides insight into three of the most 

prevalent machine learning approaches, decision trees, 

support vector machines, and neural networks. We make 

use of an illustrative “binary classification problem” 

where the goal is to categorize data observations into 

two groups. In medicine, problems of this form would 

include identifying tissue samples as cancerous or non-

cancerous; in investing, examples would include seeking 

to predict whether a market index may rise or fall.

Specifically, we’ve selected the problem of 

distinguishing datapoints that are inside and outside of 

a circle that has a radius of 1, as depicted in Figure A1. 

The dataset consists of observations that are defined by 

random x and y values. Points within the circle are blue, 

and points outside of it are grey. In ML jargon, the points’ 

x and y coordinates are “features,” which simply means 

that they’re interesting, measurable characteristics of 

the data under consideration. In a stock picking context, 

features might include financial ratios. 

FIGURE A1: THE CIRCLE DATA SET

Source: Acadian. For illustrative purposes only.

DECISION TREES
Decision trees ought to seem familiar: the game of 20 

questions represents a common type of decision tree. 

Figure A2 is a fun illustrative example. Participants ask 

a sequence of yes/no questions, each of which should 

depend on all the prior answers. Participants continue 

to ask questions until they have enough information to 

make an educated guess at (i.e., to estimate) the solution 

or until they run out of questions. This is precisely how a 

decision tree works for classification: it is a flow chart of 

questions to “ask” a data point in order to determine to 

which class it belongs.

Figure A3 illustrates the workings of a decision tree 

in the context of the circle problem. If we could only pose 

one question, the best we could do in guessing whether 

an observation is inside or outside the circle, i.e., blue 

or grey, might be to check whether its x coordinate is 

larger than some number close to 1. That’s because any 

datapoint whose x coordinate is greater than 1 must lie 

outside the circle. This is evident in Figure A1: no points 

to the right of 1 are blue. 

The leftmost plot in Figure A3 illustrates the  

result of applying this rule. Points guessed to be inside 

the circle are represented by the yellow shaded area.  

Points guessed to lie outside of the circle lie in the 

unshaded  region.

When allowed to ask only one question, the 

algorithm’s predictive accuracy is terrible: the yellow 

shaded area looks nothing like a circle. 

But by asking successively more questions about 

the data, looking from left to right, the yellow-shaded 

approximation improves. At a depth of 10, on the far 

right, it looks quite good.

FIGURE A2: A HYPOTHETICAL “20-QUESTIONS” DECISION TREE FOR GUESSING AN ANIMAL

Source: Acadian. For illustrative purposes only. 
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FIGURE A3: DECISION TREE ACCURACY AS A FUNCTION OF TREE “DEPTH”
From left to right, depth = 1, 2, 4, 10

Charts in top row reflect decision boundary for decision trees of various depths applied to the circle dataset.  Bottom row displays the first several levels of 
the respective decision tree. Source: Acadian. For illustrative purposes only. 

In general, decision trees are constructed in this step-

by-step manner. The algorithm starts by identifying 

an individual feature and an associated value that, in 

isolation from all the other features, most accurately 

classifies the datapoints. The process is then repeated 

within each of the two resulting subsamples, and so on, 

until the tree reaches a preset limit on its depth or some 

other stopping criterion set by the researcher. 

This stepwise approach to tree construction is 

termed a “greedy” algorithm. Greedy is technical jargon 

indicating that at each stage of the tree the algorithm 

selects a feature and a value based only on the immediate 

improvement in classification without considering 

implications further down the tree. We would expect 

superior classification ability from a holistic approach 

that simultaneously considers the combined effect of all 

subsequent feature and value selections. Unfortunately, 

such algorithms are often computationally infeasible. 

This step-by-step tree construction approach has 

a visibly interesting consequence in the context of the 

circle problem. Because the algorithm only considers one 

feature at a time, either x or y, every line drawn must be 

parallel to either the y or the x-axis. This is easy to see 

in the three left-most panels of Figure A3. As we allow 

the tree to have greater depth, i.e., as we ask more and 

more questions, the boundary appears more and more 

circular. But squinting at the image reveals that the circle 

approximation still consists only of lines parallel to either 

the x- and y-axis. The broader point is that understanding 

how an algorithm works can help to provide a sense of 

the complexity required to accomplish a particular task.

SUPPORT VECTOR MACHINES
While Support Vector Machines (SVM) have a complex 

name, they are an intuitive method of classifying data. 

The circle problem is ideally suited to illustrating how 

they work.

In this context, the key question is whether we 

can distinguish points inside and outside of a circle 

with a straight line. (This property is known as “linear 

separability.”) Unfortunately, this doesn’t look possible 

even from just a cursory glance at Figure A1. Why do we 

care? Because it’s easier to work with and to fit straight 

lines than curves. This concept becomes increasingly 

important as the complexity of the data increases, i.e., as 

we have more and more features. 

It turns out, though, that by transforming the 

information in each data point’s x and y values, we might 

be able to do it. Specifically, we could create two new 

features, x2and y2. If we then re-chart the datapoints on 

the basis of those transformed (squared) values we get 

Figure A4. It’s clear in this picture that the blue and grey 

points are now separable by the green straight line. 8 
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8  Readers may recognize r2 = x2 + y2 as the equation of a circle centered at (0,0) with a radius of r. The green line then represents x2 + y2=1, precisely capturing the 
circle dataset.
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FIGURE A4: THE CIRCLE DATA SET TRANSFORMED

Chart shows the data in a transformed coordinate system in which  
the data is readily separated by a straight line. Source: Acadian.  
For illustrative purposes only. 

To generalize from the circle example, SVMs find 

transformations of data, specifically new “coordinate 

systems,” that make classifying the data easier. Through 

resource efficient computer implementations, they 

can try hundreds of alternatives, starting with small 

powers of the original features, squares and cubes, and 

progressively larger and larger ones. The algorithm will 

then choose the transformation and classification rule 

that best separates the two groups of data. 

NEURAL NETWORKS
Artificial neural networks (commonly just “neural 

networks”) are the most flexible of the three methods. 

They can approximate intricate functional relationships 

in data. The cost of this flexibility is algorithmic and 

computational complexity and opacity.

Neural networks are based on the behavior of 

neurons in the human brain. Roughly speaking, neurons 

receive and transmit chemical stimuli. They respond if 

the input stimulus exceeds a threshold level, at which 

point they transmit other chemicals to the next neuron 

in the chain. Artificial neurons seek to replicate this 

behavior as shown in the top row of Figure A5.

Neural networks are comprised of artificial neurons 

much like brains are comprised of biological neurons.  

Figure A5 displays a generic schematic in which each 

white circle is such an artificial neuron. The researcher 

specifies what the nodes do and how they are arranged 

based on the nature of the problem at hand.

Instead of chemicals, artificial neural networks filter, 

process, and transform data. Features from the input 

dataset are passed into the first layer of nodes. If the data 

item received at a particular input node exceeds a certain 

threshold value, then the node will pass that information 

along to a node or several nodes in the next layer. A 

node may transform the data that it receives. It may 

combine information from several nodes in the prior layer, 

applying different weights to different sources. A neural 

network composed of several layers and a large number 

of nodes may extensively transform the data, abstracting 

it considerably away from the input information. This 

is how “deep learning” neural networks make complex 

decisions.

To implement a neural network, the researcher must 

specify its architecture, which is an engineering problem. 

The researcher sets 1) the number of layers of nodes, 2) 

which nodes are connected to each other, and 3) what 

transformation function is embedded in each node. In 

principle, a linear regression could be implemented as a 

simple neural network: it would consist of one layer, one 

node, and a regression line as the function (intercept + 

slope*input feature). In the training stage, the algorithm 

would estimate the regression intercept and slope to 

minimize the prediction error.

FIGURE A5: NEURAL NETWORK

For illustrative purposes only. Biological neuron and neural network diagram copyright Dreamstime.
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Generally speaking, though, most networks employ 

functions that have an “on/off” property, resembling 

the firing of biological neuron. Perhaps for the largest 

input values the function would pass along a 1, for most 

other values a 0, and for a small range of values some 

number(s) between 0 and 1. Image recognition might 

provide an intuitive functional context: a neural network 

could take in a set of input features, e.g., pixels of from 

photos, and through the training process discriminate 

shading or coloration in which pixel locations, or 

combinations thereof, are predictively valuable in 

recognizing image types. 

Returning to the circle problem, Figure A6 compares 

classification ability of multiple neural network 

architectures where the functions at each node have 

the on/off property. Several architectures with modest 

numbers of parameters, i.e., only a few layers and nodes, 

do quite well at approximating the circle.

FIGURE A6: CLASSIF ICATION ABIL ITY OF SEVERAL NEURAL NETWORK ARCHITECTURES
A: 1 hidden layer with 1 neuron; B: 1 hidden layer with 2 neurons; C: 1 hidden layer with 4 neurons; D: 1 hidden 
layer with 8 neurons; E: 2 hidden layers with 4 neurons each; F: 2 hidden layers with 8 neurons each; G: 3 hidden 
layers with 4 neurons each; H: 3 hidden layers with 8 neurons each

Charts display the decision boundary for various neural network architectures applied to the circle datset. Source: Acadian. For illustrative purposes only. 

But even in this simple context, the opacity of 

these neural networks is problematic in trying to 

understand what they’re doing. Knowing the function 

of an individual node won’t provide much insight. The 

transparent flow of a decision tree or the nature of the 

data transformation applied by an SVM doesn’t have a 

clear analogue. What’s more, the number of parameters 

to estimate will grow rapidly as network architecture 

becomes richer, potentially consuming substantial data 

and computational expense in the training process.
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GENERAL LEGAL DISCLAIMER
Acadian provides this material as a general overview of the firm, our 
processes and our investment capabilities. It has been provided for 
informational purposes only. It does not constitute or form part of any offer 
to issue or sell, or any solicitation of any offer to subscribe or to purchase, 
shares, units or other interests in investments that may be referred to herein 
and must not be construed as investment or financial product advice. Acadian 
has not considered any reader’s financial situation, objective or needs in 
providing the relevant information. 

The value of investments may fall as well as rise and you may not get back 
your original investment. Past performance is not necessarily a guide to 
future performance or returns. Acadian has taken all reasonable care to 
ensure that the information contained in this material is accurate at the time 
of its distribution, no representation or warranty, express or implied, is made 
as to the accuracy, reliability or completeness of such information.

This material contains privileged and confidential information and is intended 
only for the recipient/s. Any distribution, reproduction or other use of this 
presentation by recipients is strictly prohibited. If you are not the intended 
recipient and this presentation has been sent or passed on to you in error, 
please contact us immediately. Confidentiality and privilege are not lost by 
this presentation having been sent or passed on to you in error.

Acadian’s quantitative investment process is supported by extensive 
proprietary computer code. Acadian’s researchers, software developers, 
and IT teams follow a structured design, development, testing, change 
control, and review processes during the development of its systems and 
the implementation within our investment process. These controls and 
their effectiveness are subject to regular internal reviews, at least annual 
independent review by our SOC1 auditor. However, despite these extensive 
controls it is possible that errors may occur in coding and within the 
investment process, as is the case with any complex software or data-driven 
model, and no guarantee or warranty can be provided that any quantitative 
investment model is completely free of errors. Any such errors could have a 

negative impact on investment results. We have in place control systems and 
processes which are intended to identify in a timely manner any such errors 
which would have a material impact on the investment process.

Acadian Asset Management LLC has wholly owned affiliates located in 
London, Singapore, Sydney, and Tokyo. Pursuant to the terms of service level 
agreements with each affiliate, employees of Acadian Asset Management 
LLC may provide certain services on behalf of each affiliate and employees 
of each affiliate may provide certain administrative services, including 
marketing and client service, on behalf of Acadian Asset Management LLC.

Acadian Asset Management LLC is registered as an investment adviser with 
the U.S. Securities and Exchange Commission. Registration of an investment 
adviser does not imply any level of skill or training. 

Acadian Asset Management (Japan) is a Financial Instrument Operator 
(Discretionary Investment Management Business). Register Number Director-
General Kanto Local Financial Bureau (Kinsho) Number 2814. Member of 
Japan Investment Advisers Association.

Acadian Asset Management (Singapore) Pte Ltd, (Registration Number: 
199902125D) is licensed by the Monetary Authority of Singapore. 

Acadian Asset Management (Australia) Limited (ABN 41 114 200 127) is 
the holder of Australian financial services license number 291872 (“AFSL”). 
Under the terms of its AFSL, Acadian Asset Management (Australia) Limited 
is limited to providing the financial services under its license to wholesale 
clients only. This marketing material is not to be provided to retail clients. 

Acadian Asset Management (UK) Limited is authorized and regulated by 
the Financial Conduct Authority (‘the FCA’) and is a limited liability company 
incorporated in England and Wales with company number 05644066. Acadian 
Asset Management (UK) Limited will only make this material available to 
Professional Clients and Eligible Counterparties as defined by the FCA under 
the Markets in Financial Instruments Directive.


