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Investing for the Long Run when Returns
Are Predictable

NICHOLAS BARBERIS*

ABSTRACT

We examine how the evidence of predictability in asset returns affects optimal
portfolio choice for investors with long horizons. Particular attention is paid to
estimation risk, or uncertainty about the true values of model parameters. We find
that even after incorporating parameter uncertainty, there is enough predictability
in returns to make investors allocate substantially more to stocks, the longer their
horizon. Moreover, the weak statistical significance of the evidence for predictabil-
ity makes it important to take estimation risk into account; a long-horizon investor
who ignores it may overallocate to stocks by a sizeable amount.

ONE OF THE MORE STRIKING EMPIRICAL FINDINGS in recent financial research is
the evidence of predictability in asset returns.! In this paper we examine the
implications of this predictability for an investor seeking to make sensible
portfolio allocation decisions.

We approach this question from the perspective of horizon effects: Given
the evidence of predictability in returns, should a long-horizon investor al-
locate his wealth differently from a short-horizon investor? The motivation
for thinking about the problem in these terms is the classic work of Sam-
uelson (1969) and Merton (1969). They show that if asset returns are i.i.d.,
an investor with power utility who rebalances his portfolio optimally should
choose the same asset allocation, regardless of investment horizon.

In light of the growing body of evidence that returns are predictable, the
investor’s horizon may no longer be irrelevant. The extent to which the ho-
rizon does play a role serves as an interesting and convenient way of think-
ing about how predictability affects portfolio choice. Moreover, the results
may shed light on the common but controversial advice that investors with
long horizons should allocate more heavily to stocks.2

* Graduate School of Business, University of Chicago. I am indebted to John Campbell and
Gary Chamberlain for guidance and encouragement. I also thank an anonymous referee, the
editor René Stulz, and seminar participants at Harvard, the Wharton School, Chicago Business
School, the Sloan School at MIT, UCLA, Rochester, NYU, Columbia, Stanford, INSEAD, HEC,
the LSE, and the London Business School for their helpful comments.

1 See for example Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,
1988b), Fama and French (1988, 1989), and Campbell (1991).

2 See Siegel (1994), Samuelson (1994), and Bodie (1995) for some recent discussions of this
debate.
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On the theoretical side, it has been known since Merton (1973) that vari-
ation in expected returns over time can potentially introduce horizon effects.
The contribution of this paper is therefore primarily an empirical one: Given
actual historical data on asset returns and predictor variables, we try to
understand the magnitude of these effects by computing optimal asset allo-
cations for both static buy-and-hold and dynamic optimal rebalancing
strategies.

An important aspect of our analysis is that in constructing optimal port-
folios, we account for the fact that the true extent of predictability in returns
is highly uncertain. This is of particular concern in this context because the
evidence of time variation in expected returns is sometimes weak. A typical
example is the following.3 Let r, be the continuously compounded real return
on the value-weighted portfolio of the New York Stock Exchange in month ¢,
and (d/p), be the portfolio’s dividend-price ratio, or dividend yield, defined
as the sum of dividends paid in months ¢ — 11 through ¢ divided by the value
of the portfolio at the end of month ¢. An OLS regression of the returns on
the lagged dividend yield, using monthly returns from January 1927 to De-
cember 1995, gives

d
r, = —0.0056 + 0.2580 <—> . + ¢, (1)
0.0064) (0.1428) ‘P /*

where standard errors are in parentheses and the R? is 0.0039.

The coefficient on the dividend yield is not quite significant, and the R? is
very low. Some investors might react to the weakness of this evidence by
discarding the notion that returns are predictable; others might instead ig-
nore the substantial uncertainty regarding the true predictive power of the
dividend yield and analyze the portfolio problem assuming the parameters
are known precisely. We argue here that both of these views, though under-
standable, are flawed. The approach in this paper constitutes what we be-
lieve is an appropriate middle ground: The uncertainty about the parameters,
also known as estimation risk, is accounted for explicitly when constructing
optimal portfolios.

We analyze portfolio choice in discrete time for an investor with power
utility over terminal wealth. There are two assets: Treasury bills and a stock
index. The investor uses a VAR model to forecast returns, where the state
vector in the VAR can include asset returns and predictor variables. This is
a convenient framework for examining how predictability affects portfolio
choice: By changing the number of predictor variables in the state vector, we
can compare the optimal allocation of an investor who takes return predict-
ability into account to that of an investor who is blind to it.

How is parameter uncertainty incorporated? It is natural to take a Bayes-
ian approach here. The uncertainty about the VAR parameters is summa-
rized by the posterior distribution of the parameters given the data. Rather

3 Kandel and Stambaugh (1996) use a similar example to motivate their related work on
portfolio choice.
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than constructing the distribution of future returns conditional on fixed pa-
rameter estimates, we integrate over the uncertainty in the parameters cap-
tured by the posterior distribution. This allows us to construct what is known
in Bayesian analysis as the predictive distribution for future returns, con-
ditional only on observed data, and not on any fixed parameter values. By
comparing the solution in the cases where we condition on fixed parameters,
and where we integrate over the posterior, we see the effect of parameter
uncertainty on the portfolio allocation problem.

Our first set of results relates to the case where parameter uncertainty is
ignored — that is, the investor allocates his portfolio taking the parameters
as fixed at their estimated values in equation (1). We analyze two distinct
portfolio problems: a static buy-and-hold problem and a dynamic problem
with optimal rebalancing.

In the buy-and-hold case, we find that predictability in asset returns leads
to strong horizon effects: an investor with a horizon of 10 years allocates
significantly more to stocks than someone with a one-year horizon. The rea-
son is that time-variation in expected returns such as that in equation (1)
induces mean-reversion in returns, lowering the variance of cumulative re-
turns over long horizons. This makes stocks appear less risky to long-
horizon investors and leads them to allocate more to equities than would
investors with shorter horizons.

We also find strong horizon effects when we solve the dynamic problem
faced by an investor who rebalances optimally at regular intervals. However,
the results here are of a different nature. Investors again hold substantially
more in equities at longer horizons, but only when they are more risk-averse
than log utility investors. The extra stock holdings of long-horizon investors
are “hedging demands” in the sense of Merton (1973). Under the specifica-
tion given in equation(1), the available investment opportunities change over
time as the dividend yield changes: When the yield falls, expected returns
fall. Merton shows that investors may want to hedge these changes in the
opportunity set. In our data, we find that shocks to expected stock returns
are negatively correlated with shocks to realized stock returns. Therefore,
when investors choose to hedge, they do so by increasing their holdings of
stocks.

As argued earlier, it may be important that the investor take into account
uncertainty about model parameters such as the coefficient on the predictor
variable in equation (1), or the regression intercept. The standard errors in
equation (1) indicate that the true forecasting ability of the dividend yield
may be much weaker than that implied by the raw parameter estimate. The
investor’s portfolio decisions can be improved by adopting a framework that
recognizes this.

We find that in both the static buy-and-hold and the dynamic rebalancing
problem, incorporating parameter uncertainty changes the optimal alloca-
tion significantly. In general, horizon effects are still present, but less prom-
inent: A long-horizon investor still allocates more to equities, but the magnitude
of the effect is smaller than would be suggested by an analysis using fixed
parameter values. In some situations, we find that uncertainty about pa-
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rameters can be large enough to reverse the direction of the results. Instead
of allocating more to stocks at long horizons, investors may actually allocate
less once they incorporate parameter uncertainty properly.

Though parameter uncertainty has similar implications for both buy-and-
hold and rebalancing investors, the mechanism through which it operates
differs in the two cases. Incorporating uncertainty about the regression in-
tercept and about the coefficient on the predictor variable increases the vari-
ance of the distribution for cumulative returns, particularly at longer horizons.
This makes stocks look riskier to a long-term buy-and-hold investor, reduc-
ing their attractiveness. In the case of dynamic rebalancing, the investor
needs to recognize that he will learn more about the uncertain parameters
over time; we find that the possibility of learning can also reduce the stock
allocation of a long-term investor, possibly to a level below that of a short-
horizon investor. The lower allocation to stocks serves as a hedge against
changes in perceived investment opportunities as the investor updates his
beliefs about the parameters.

Parameter uncertainty also affects the sensitivity of the optimal allocation
to the predictor variable. When it is ignored, the optimal allocation to stocks
is very sensitive to the value of the dividend yield: If the yield falls, predict-
ing low stock returns, the investor lowers his allocation to stocks sharply.
Behavior of this kind makes for a highly variable allocation to stocks over
time. When we acknowledge that the parameters are uncertain, the alloca-
tion becomes less sensitive to changes in the dividend yield, leading to more
gradual shifts in portfolio composition over time.

There is surprisingly little empirical work on portfolio choice in the pres-
ence of time-varying expected returns. To our knowledge, Brennan, Schwartz,
and Lagnado (1997) make the first attempt on this problem. Working in
continuous time, they analyze the dynamic programming problem faced by
an investor who rebalances optimally, for a small number of assets and pre-
dictor variables. Their approach is to solve the partial differential equation
derived originally by Merton (1973) for this problem. Motivated by their
results, Campbell and Viceira (1999) are able to find an analytical approx-
imation to the more general problem of deriving both optimal consumption
and portfolio rules for an infinite-horizon investor with Epstein—Zin utility.
Kim and Omberg (1996) make a related theoretical contribution by deriving
exact analytical formulas for optimal portfolio strategies when investors have
power utility and expected returns are governed by a single mean-reverting
state variable. All these papers ignore estimation risk.

The issue of parameter uncertainty was first investigated by Bawa, Brown,
and Klein (1979) in the context of i.i.d. returns.# Kandel and Stambaugh
(1996) were the first to point out the importance of recognizing parameter
uncertainty in the context of portfolio allocation with predictable returns.
Using a Bayesian framework similar in spirit to ours, they show that for a
short-horizon investor, the optimal allocation can be sensitive to the current

4 Other papers in this vein include Jobson and Korkie (1980), Jorion (1985), and Frost and
Savarino (1986).
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values of predictor variables such as the dividend yield, even though regres-
sion evidence for such predictability may be weak. By examining a wider
range of horizons, both short and long, rather than the one-month horizon of
Kandel and Stambaugh (1996), we hope to uncover a broader set of phenom-
ena and a more substantial role played by parameter uncertainty.

Section I introduces the framework we use for incorporating predictability
and parameter uncertainty into the optimal portfolio problem. Sections II
and III construct distributions for long-horizon returns, and use them to
solve a buy-and-hold investor’s portfolio problem. The focus is on how these
distributions and the resulting optimal allocation are affected by predict-
ability and parameter uncertainty. Rather than introduce both effects at
once, we bring them in one at a time: Section II considers parameter uncer-
tainty in the context of an i.i.d. model; Section III then allows for predict-
ability. Section IV turns to the dynamic problem of optimal rebalancing and
contrasts the results with those in the buy-and-hold case. We analyze esti-
mation risk in a dynamic context, including the possibility of learning more
about the parameters over time. Section V concludes.

I. A Framework for Asset Allocation

This section presents a framework for investigating how predictability in
asset returns and uncertainty about model parameters affect portfolio choice.
The framework is based on that of Kandel and Stambaugh (1996), who in
turn draw on models originally proposed by Zellner and Chetty (1965). Since
much of our analysis focuses on investors with long horizons, it is important
to be precise about the choices these investors are allowed to make. We
distinguish between three different ways of formulating the portfolio problem.

One possibility is a buy-and-hold strategy. In this case, an investor with a
10-year horizon chooses an allocation at the beginning of the first year, and
does not touch his portfolio again until the 10 years are over.

The second strategy, we call myopic rebalancing. In this case, the investor
chooses some arbitrary rebalancing interval, say one year for the 10-year
investor. He then chooses an allocation at the beginning of the first year,
knowing that he will reset his portfolio to that same allocation at the start
of every year. This is myopic in that the investor does not use any of the new
information he has once a year has passed.

The final, most sophisticated strategy is optimal rebalancing. Assume again
that the rebalancing interval is one year. In this case, the investor chooses
his allocation today, knowing that at the start of every year, he will reopti-
mize his portfolio using the new information at each time.

This paper presents results for both the buy-and-hold and the optimal
rebalancing cases. The results for myopic rebalancing are too similar to those
for the buy-and-hold strategy to justify reporting them separately. In the
next few paragraphs, we describe the asset allocation framework from the
perspective of a buy-and-hold investor. We postpone a detailed discussion of
the dynamic rebalancing problem until Section IV; most of the issues de-
scribed below, however, remain highly relevant for that case as well.
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A. Asset Allocation Framework for a Buy-and-Hold Investor

Suppose we are at time 7' and want to write down the portfolio problem
for a buy-and-hold investor with a horizon of 7" months. There are two as-
sets: Treasury bills and a stock index. For simplicity, we suppose that the
continuously compounded real monthly return on Treasury bills is a con-
stant r,. We model excess returns on the stock index using a VAR framework
similar to that in Kandel and Stambaugh (1987), Campbell (1991), and Ho-
drick (1992). It takes the form

z,=a+Bx,_{+¢, (2)

with z;, = (ry,x/), x, = (x14,...,%,,)’, and € ~ ii.d. N(0,%). The first com-
ponent of z,, namely r,, is the continuously compounded excess stock return
over month ¢.5 The remaining components of z,, which together make up the
vector of explanatory variables x,, consist of variables useful for predicting
returns, such as the dividend yield. This VAR framework therefore neatly
summarizes the dynamics we are trying to model. The first equation in the
system specifies expected stock returns as a function of the predictor vari-
ables. The other equations specify the stochastic evolution of the predictor
variables.

If initial wealth W; = 1 and w is the allocation to the stock index, then
end-of-horizon wealth is given by

Wrep =1 — w)exp(rff‘) + wexp(rfT +rp o ). (3)

The investor’s preferences over terminal wealth are described by constant
relative risk-aversion power utility functions of the form

14 1-A
W) = . 4
V(W) = 7— @
Writing the cumulative excess stock return over T periods as
Rpyp =rpeg +rpgt o0 +rpyg, (5)
the buy-and-hold investor’s problem is to solve
{a- w)exp(rf’f’) + wexp(r/f’ + Ry i)t 4
max Ep 1_A . (6)

5 A portfolio’s “excess” return is defined as the rate of return on the portfolio minus the
Treasury bill rate, where both returns are continuously compounded.



Investing for the Long Run when Returns Are Predictable 231

E, denotes the fact that the investor calculates the expectation conditional
on his information set at time 7. At the heart of this paper is the issue of
which distribution the investor should use in calculating this expectation.
The distribution may be very different, depending on whether the investor
accounts for parameter uncertainty or recognizes the predictability in returns.

To see whether predictability in returns has any effect on portfolio choice,
our strategy is to compare the allocation of an investor who recognizes pre-
dictability to that of an investor who is blind to it. The VAR model provides
a way of simulating investors with different information sets: We simply
alter the number of predictor variables included in the vector x,.

Once the predictors have been specified, a standard procedure is to esti-
mate the VAR parameters 6 = (a, B, ), and then iterate the model forward
with the parameters fixed at their estimated values. This generates a dis-
tribution for future stock returns conditional on a set of parameter values,
which we write as p(Rr,7|2,0), where z = (z,,...,27)" is the data observed
by the investor up until the start of his investment horizon. The investor
then solves

max fv(WTm)p(RTmlz,é) dRrp. 7. (7)

The problem with this approach is that it ignores the fact that 6 is not
known precisely. There may be substantial uncertainty about the regression
coefficients a and B. For a long-horizon investor in particular, it is impor-
tant to take the uncertainty in the estimation—estimation risk—into ac-
count. A natural way to do this is to use the Bayesian concept of a posterior
distribution p(0#|z), which summarizes the uncertainty about the parameters
given the data observed so far. Integrating over this distribution, we obtain
the so-called predictive distribution for long-horizon returns. This distribu-
tion® is conditioned only on the sample observed, and not on any fixed 6:

p(Br.1l) = [ p(Ryisl6,2) plole) do. ®

A more appropriate problem for the investor to solve is then

mgx fU(WT+j~)p(RT+j~|Z) dRp.4. 9)

This framework allows us to understand how parameter uncertainty af-
fects portfolio choice. We simply compare the solution to problem (7), which
ignores parameter uncertainty, with the solution to problem (9), which takes
this uncertainty into account.

6 It is clearly an abuse of notation to use the same notation p for all the different distribu-
tions, but hopefully by giving all the arguments explicitly, there will be no confusion.
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How can problems (7) and (9) be solved? We calculate the integrals in
problems (7) and (9) for w = 0, 0.01, 0.02,...,0.98, 0.99, and report the w that
maximizes expected utility. Throughout the paper, we restrict the allocation
to the interval 0 = w = 1, precluding short selling and buying on margin.”

The integrals themselves are evaluated numerically by simulation. To il-
lustrate the idea behind simulation methods, imagine that we are trying to
evaluate

fg(y)p(y)dy,

where p(y) is a probability density function. We can approximate the inte-
gral by

I
> gly®),
i=1

~ =

where yV,...,y? are independent draws from the probability density p(y).
To ensure a high degree of accuracy, we take I = 1,000,000 throughout.

In the examples considered in this paper, the conditional distribution
p(Rp.7|z,0) is Normal. Therefore the integral in equation (7) is approxi-
mated by generating 1,000,000 independent draws from this Normal distri-
bution, and averaging v(Wy, ) over all the draws.

In the case of equation (9), it is helpful to rewrite the problem as

m{f)ix fU(WT+f‘)p(RT+f‘,9|Z) dRr,7df
(10)

= max [0(Wy.1)p Ry 112,0)p(8]2)dRy. 7.6,

The integral can therefore be evaluated by sampling from the joint dis-
tribution p(Rz.7,0|z), and then averaging v(Wy. ) over those draws. As the
decomposition in equation (10) shows, we sample from the joint distribution
by first sampling from the posterior p(6|z) and then from the conditional
p(Rp.7|z,0). Sections II and III give detailed examples of this.8

7 To be exact, we restrict the allocation » to the range 0 = w = 0.99. We do not calculate
expected utility for @ = 1 because in this case the integral in equation (9) equals —oo. The
problem is that when w = 1, wealth can be arbitrarily close to zero, but the left tail of the
predictive distribution does not shrink fast enough to ensure that expected utility is bounded
from below.

8 The integral in problem (7) is only one dimensional and therefore quadrature methods are
a reasonable alternative to simulation. This is not the case for problem (9). To write down a
closed-form expression for p(Rp.7|z), we would need to integrate out the parameters 6, as
shown in equation (8), and this is not possible for T > 1. We therefore need to integrate over the
parameter space as well, and an integral of this size can only be tackled by simulation. For the
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This section has shown how to vary the degree of predictability observed by
the investor—by changing the set of predictor variables included in the re-
gression model—and how to incorporate parameter uncertainty into the analy-
sis, by integrating over the posterior distribution of the parameters. Sections II
and ITI use this framework to examine how the optimal portfolio changes when
predictability in returns and estimation risk are accounted for.

B. The Data

The empirical work in this paper uses postwar data on asset returns and
predictor variables. The stock index is the value-weighted index of stocks
traded on the NYSE, as calculated by the Center for Research in Security
Prices (CRSP) at the University of Chicago. In calculating excess returns, we
use U.S. Treasury bill returns as provided by Ibbotson and Associates. We
also use the dividend yield as a predictor variable. The dividend yield in
month ¢ is defined as the dividends paid by the firms in the stock index
during months ¢ — 11 through ¢, divided by the value of the index at the end
of month ¢.

Monthly data are used throughout, spanning 523 months from June 1952
through December 1995. We restrict the data to this postwar period so as to
avoid the time before the Treasury Accord of 1951 when interest rates were
held almost constant by the Federal Reserve Board. Since the regression
attempts to model the stochastic behavior of stock returns in excess of Trea-
sury bills, it is important to avoid structural breaks in the time series for the
latter variable.

II. The Effect of Parameter Uncertainty

Rather than incorporate both predictability and parameter uncertainty at
once, we introduce them one at a time. That is, we start out by considering
the special case of the model in Section I where no predictor variables are
included in the VAR—and hence where asset returns are i.i.d.—and look at
how parameter uncertainty alone affects portfolio allocation. In Section III,
we move to the more general case which allows for predictability in returns.

A. Constructing the Predictive Distribution

Suppose then that stock index returns are i.i.d., so that
ry=pot o€, (11)

where r, is the continuously compounded excess return on the stock index
over month ¢, and where ¢, ~ i.i.d. N(0,02).

special case of T' = 1, the parameters ¢ can be integrated out, giving a closed-form ¢-distribution
for the one-period-ahead predictive distribution. The integral is therefore again one dimen-
sional and can be accurately handled by quadrature. By looking only at the T=1 case, Kandel
and Stambaugh (1996) are able to take advantage of this.
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As described in Section I, a buy-and-hold investor with a horizon T months
long starting at time 7' solves the problem stated in equation (6). In our
numerical work, we set r, the continuously compounded real monthly T-bill
return, equal to 0.0036, the real return on T-bills over December 1995, the
last month of our sample.?

The investor has two choices of distribution for calculating the expecta-
tion in equation (6). He may incorporate parameter uncertainty and use
the predictive distribution for returns p(Rp.#|r), where r = (rq,...,rp).
Alternatively, he may ignore parameter uncertainty and calculate the ex-
pectation over the distribution of returns conditional on fixed parameter
values, p(Rp.7|r,m,02). The effect of parameter uncertainty is revealed by
comparing the optimal portfolio allocations in these two cases.

We approximate the integral for expected utility by taking a sample
(Rﬁf)ii{ from one of the two possible distributions, and then computing

é {1 — w)exp(r,T) + wexp(r,T + R 7)) 4

1
- 12
I3 1-A (12)

In Section II.B, we present the optimal allocations » which maximize ex-
pression (12) for a variety of risk aversion levels A and investment horizons
T, and for each of the two cases where the investor either ignores or ac-
counts for parameter uncertainty. Since sampling from the distributions
p(Rp.#|r) and p(Rp,7|r,u,0?) is an important step in computing these op-
timal allocations, we devote the next few paragraphs to explaining the sam-
pling procedure in more detail.

As indicated in equation (10), there are two steps to sampling from the
predictive distribution for long-horizon returns p(R;,#|r). First, we gener-
ate a large sample from the posterior distribution for the parameters
p(w,02|r). Second, for each of the (u,o?) pairs drawn, we sample once
from the distribution of long-horizon returns conditional on both past data
and the parameters, p(Rp.7|un,027), a Normal distribution. This produces
a large sample from the predictive distribution. We now provide more de-
tail about each of these steps.

To construct the posterior distribution p(u,oc“|r), a prior is required.
Throughout this section, we use a conventional uninformative prior,!©

?|

1
p(p,0?) oc —.
a

9 The nominal return on T-bills in December 1995 is deflated using the rate of change in the
Consumer Price Index, provided by Ibbotson and Associates.

10 Another reasonable approach would be to use a more informative prior that puts zero
weight on negative values of u, reflecting the observation in Merton (1980) that the expected
market risk premium should be positive.



Investing for the Long Run when Returns Are Predictable 235

Table 1

Parameter Estimates for an i.i.d. Model of Stock Returns
The results in this table are based on the model r, = u + €,, where r, is the continuously
compounded excess stock index return in month ¢ and €, ~ i.i.d. N(0,02). The table gives the
mean and standard deviation (in parentheses) of each parameter’s posterior distribution. The
left panel uses data from June 1952 to December 1995; the right panel uses data from January
1986 to December 1995.

1952-1995 1986-1995
u o? u o?
0.0050 0.0017 0.0065 0.0019
(0.0018) (0.0001) (0.0039) (0.0003)

Zellner (1971) shows that the posterior is then given by

T-11
2 — - - = _ =\2
o2|r 1G< 5 2 r))

t=1

2 _o?
ulo?r ~N\F— |,

where 7 = (1/T)S,r,.

To sample from the posterior p(u,o?|r), we therefore first sample from
the marginal p(o2|r), an Inverse Gamma distribution, and then, given the
o? drawn, from the conditional p(u|o?z), a Normal distribution. Repeating
this many times gives an accurate representation of the posterior distribution.

Table I presents the results of this procedure. The left panel uses monthly
data on stock index returns from June 1952 to December 1995. The right
panel uses the subsample of data from January 1986 to December 1995. An
investor who believes that the mean u and variance o2 of stock returns are
changing over time may feel more comfortable estimating those parameters
over this second more recent data sample.

In each case, the data are used to generate a sample of size 1,000,000 from
the posterior distribution for u and o 2. Table I gives the mean and standard
deviation of the posterior distribution for each parameter. For example, for
an investor using the full sample from 1952 to 1995, the posterior distribu-
tion for the mean monthly excess stock return u has mean 0.005 and stan-
dard deviation 0.0018. This appears to be an important source of parameter
uncertainty for the investor. The posterior distribution for the variance o ? is
much tighter and is centered around 0.0017. An investor confining his at-
tention to the shorter data set will be more uncertain about the parameters;
the standard deviation of the posterior for w is now a substantial 0.0039.
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The second step in sampling from the predictive distribution is to sample
from the distribution of returns conditional on fixed parameter values
p(RT-%—'f | /.L,O'z,r). Since

rri1 = pt €ty
: (13)

rref = pt €pss,

the sum RT+T rri1t e+ ... + rpyp is Normally distributed conditional
on u and o2 with mean Ty and variance T2 Therefore for each of the 1,000,000
pairs of u and o2 drawn from the posterior p(u,o 2|r), we sample one point
from the Normal distribution with mean T,u and variance T'o2. This gives a
sample of size 1,000,000 from the predictive distribution p (Rp,#|r), which we
can use to compute the optimal allocation when taking parameter uncertainty
into account.

Our strategy for understanding the effect of parameter uncertainty is to
compare the allocation of an investor who uses the predictive distribution
when forecasting returns with the allocation of an investor who ignores es-
timation error, sampling instead from the distribution of returns conditional
on fixed parameters p(Rp.7|r,u,02). For the latter case, we assume that
the investor takes the posterior means of u and o2 given in Table I as the
fixed values of the parameters, and then draws 1,000,000 times from a Nor-
mal distribution with mean T,u and variance T 2.

We are now ready to present optimal portfolio allocations. We compute the
quantity in equation (12) for w ranging from zero to 0.99 in increments of
0.01, and report the w maximizing this quantity. The procedure is repeated
for several possible investment horizons, ranging from one year to 10 years
in one-year increments, for several values of risk aversion A and for the two
possible distributions for cumulative returns, one of them ignoring estima-
tion risk, the other incorporating it.

B. Results

Figure 1 shows the optimal percentage 100w percent allocated to the stock
index, plotted against the investment horizon in years. The upper graphs
show the optimal allocations chosen by investors who use the full data set
from 1952 to 1995; the lower graphs are for investors who use only the
subsample from 1986 to 1995. The two graphs on the left are based on a
risk-aversion of A = 5, those on the right are for A = 10. The dash/dot line
shows the allocation conditional on fixed parameter values, and the solid
line shows the allocation when we account for parameter uncertainty.

The dash/dot line is completely horizontal in all the graphs. In other words,
an investor ignoring the uncertainty about the mean and variance of asset
returns would allocate the same amount to stocks, regardless of his invest-
ment horizon. This sounds similar to Samuelson’s famous horizon irrele-
vance result, although it is important to note that the two results are different.
Samuelson (1969) shows that with power utility and i.i.d. returns, the opti-
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Figure 1. Optimal allocation to stocks plotted against the investment horizon in years.
The investor follows a buy-and-hold strategy, uses an i.i.d. model for asset returns, and has
power utility W1™/(1 — A) over terminal wealth. The dash/dot line corresponds to the case
where the investor ignores parameter uncertainty, the solid line to the case where he accounts
for it. The top two graphs use data from 1952 to 1995, the lower two use data from 1986 to 1995.

mal allocation is independent of the horizon. However, he proves this for an
investor who optimally rebalances his portfolio at regular intervals, rather
than for the buy-and-hold investor we consider here.

The main point of this exercise though, is to show how the allocation dif-
fers when parameter uncertainty is explicitly incorporated into the inves-
tor’s decision-making framework. Interestingly, Figure 1 shows that in this
case, the stock allocation falls as the horizon increases. In other words, pa-
rameter uncertainty can introduce horizon effects even within the context of
an i.i.d. model for returns. This point does not appear to have been noted in
the earlier literature on this topic, such as Bawa et al. (1979). That research
focuses more on how estimation risk varies with the size of the data sample,
while keeping the investor’s horizon fixed. The results here are concerned
with the effects of estimation risk as we vary the investor’s horizon, while
keeping the sample size fixed.

The magnitude of the effects induced by parameter uncertainty are sub-
stantial. For an investor using the full data set, and with A = 5, the differ-
ence in allocation at a 10-year horizon is approximately 10 percent. For another
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investor with the same risk-aversion of A = 5, but who uses only the more
recent subsample of data, the effect is dramatically larger, a full 35 percent
at the 10-year horizon! This reflects the greater impact of the higher pa-
rameter uncertainty faced by an investor who uses such a short data sample.

The fact that parameter uncertainty makes a difference is often confusing
at first sight. When parameter uncertainty is 1gn0red the investor uses a
Normal distribution with mean T and variance T'o? for his forecast of log
cumulative returns. Both the mean and, more importantly, the variance,
grow linearly with the investor’s horizon T. Figure 1 shows that this leads to
the same stock allocation, regardless of the investor’s horizon.

Accounting for estimation risk changes this. The investor’s distribution
for long-horizon returns now incorporates an extra degree of uncertainty,
increasing its variance. Moreover, this extra uncertainty makes the variance
of the distribution for cumulative returns increase faster than linearly with
the horizon 7. This makes stocks look riskier to long-horizon investors, who
therefore reduce the amount they allocate to equities.

The reason variances increase faster than linearly with the horizon is
because, in the presence of parameter uncertainty, returns are no longer
i.i.d. from the point of view of the investor, but rather positively serially
correlated. To understand this more precisely, recall that an important source
of uncertainty in the parameters surrounds the mean of the stock return. If
the stock return is high over the first month, then it will probably be high
over the second month because it is likely that the state of the world is one
with a high realization of the uncertain stock mean parameter u. This is the
sense in which stock returns are positively serially correlated from the in-
vestor’s perspective.

An important issue we have not yet discussed is the accuracy of the nu-
merical methods used to obtain the optimal portfolios. In an effort to main-
tain high accuracy, we use samples containing 1,000,000 draws from the
sampling distribution when calculating expected utility. In the Appendix, we
attempt to convey the size of the simulation error that is present; the results
there suggest that using 1,000,000 draws does indeed provide a high degree
of accuracy.

II1. The Effect of Predictability
A. Constructing the Predictive Distribution

Now that the impact of parameter uncertainty alone has been illustrated,
predictability can be introduced as well. We return to the regression model
of equation (2) discussed in Section I. In the calculations presented in this
section, the vector z, contains only two components: the excess stock index
return r,, and a single predictor variable, the dividend yield x, ,, which cap-
tures an important component of the variation in expected returns.!

1 Many papers demonstrate the dividend yield’s ability to forecast returns. See for example
Keim and Stambaugh (1986), Fama and French (1988), and Campbell (1991).
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As explained in Section I, the problem faced at time 7' by a buy-and-hold
investor with a horizon of T' months is given by equation (6). There are a
number of possible distributions the investor can use when computing the
expectation in equation (6). An investor who ignores the uncertainty in the
model parameters uses the distribution of future returns conditional on both
past data and fixed parameter values 6, p (R, 7#|0,2z), where z = (z4,...,27)".
In contrast, the investor who takes parameter uncertainty into account sam-
ples from the predictive distribution, conditional only on past data and not
on the parameters, p(Rp,7|z).

We approximate the integral for expected utility by taking a sample
(R%lf)ﬁi{ from one of the two possible distributions, and then computing

i {(1- w)exp(rff’) + wexp(rff’ + R%if)}l_A‘ 14

1

In Section III.B we present the optimal allocations o which maximize the
quantity in expression (14) for a variety of risk aversion levels A and invest-
ment horizons 7T, and for different cases where the investor either ignores or
accounts for parameter uncertainty. The next few paragraphs explain how
we sample from p(Rp.7|z) and p(Rp,+|6,2z), an important step in computing
these optimal allocations.

The procedure for sampling from the predictive distribution is similar to
that in Section II. First, we generate a sample of size I = 1,000,000 from the
posterior distribution for the parameters p(a,B,3|z). Second, for each of the
1,000,000 sets of parameter values drawn, we sample once from the distri-
bution of returns conditional on both past data and the parameters, a Nor-
mal distribution. This gives us a sample of size 1,000,000 from the predictive
distribution for returns, conditional only on past returns, with the param-
eter uncertainty integrated out. We now provide more detail about each of
these steps.

To compute the posterior distribution p(a,B,2|z), rewrite the model as

2 1 x €3
a/
=1 +1 ], (15)
B/
27 1 x74 €r
or
Z=XC+E, (16)
where Z is a (T — 1,n + 1) matrix with the vectors z5,...,z7 as rows; X is
a (T — 1,n + 1) matrix with the vectors (1x{),...,(1x7_;) as rows, and E is
a (T — 1,n + 1) matrix with the vectors €3,...,e; as rows. Finally C is an

(n + 1,n + 1) matrix with top row a’ and the matrix B’ below that. Here
n = 1 because we use only one predictor variable, the dividend yield.
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Table II
Parameter Estimates for a VAR Model of Stock Returns

The results in this table are based on the model z, = a + Bx,_; + ¢,, where z, = (r, x,)" includes
continuously compounded monthly excess stock returns r, and the dividend yield x,, and where
€, ~ ii.d. N(0,%). The table gives the mean and standard deviation (in parentheses) of each
parameter’s posterior distribution. The figures in bold above the diagonal in the variance ma-
trices are correlations. The left panel uses data from June 1952 to December 1995; the right
panel uses data from January 1986 to December 1995.

1952-1995 1986-1995
a B a B

-0.0143 0.5118 —0.0303 1.0919
(0.0081) (0.2129) (0.0281) (0.8265)

0.0008 0.9774 0.0013 0.9577
(0.0003) (0.0091) (0.0010) (0.0305)

3 3

0.0017 -0.9351 0.0019 -0.9323
(0.0001) (0.0055) (0.0003) (0.0122)
3.0E—-6 2.6E—6
(1.9E-7) (3.4E-7)

Zellner (1971) discusses the Bayesian analysis of a multivariate regres-
sion model in the traditional case with exogenous regressors. His analysis
carries over directly to our dynamic regression framework with endogenous
regressors; the form of the likelihood function is the same in both cases, so
long as we condition on the first observation in the sample, z;. A standard
uninformative prior here!2 is

p(C,2) o [S|70F2r2,
The posterior p(C,3 *|z) is then given by
371z ~ Wishart(T—n — 2,S71)
vec(C)|2,z ~ N(vec(C),S ® (X'X)™)

where S = (Z — Xé)’(Z — Xé) with C = (X'X) 'X'Z. We sample from the
posterior distribution by first drawing from the marginal p(3~1|z), and then
from the conditional p(C|X,z).

Table II presents the mean and standard deviation of the posterior distri-
bution for a, B, and 2, generated by sampling 1,000,000 times from that
posterior. The left panel uses the full data sample covering the period 1952

12 Stambaugh (1999) discusses the use of alternative priors and of using the unconditional
likelihood instead of conditioning on z;.
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to 1995; the results on the right are obtained using the subsample from 1986
to 1995. An investor who believes that the relationship between the dividend
yield and stock returns is changing over time may prefer to estimate the
regression over this more recent sample.

Look first at the left panel of Table II. The B matrix shows the well-
documented predictive power of the dividend yield for stock returns: The
posterior distribution for that coefficient has mean 0.5118 and standard de-
viation 0.2129. The dividend yield is highly persistent. The variance matrix
shows the strong negative correlation between innovations in stock returns
and the dividend yield, estimated here at —0.9351; this has an important
influence on the distribution of long-horizon returns. Note also the greater
parameter uncertainty faced by investors using only the recent subsample;
in particular, the predictive power of the dividend yield for returns is now
estimated much less accurately.

The second step in sampling from the predictive distribution is to sample
from p(Ry.7|0,2z). Note that since z, = a + Bx,_; + ¢,, we can write z, = a +
Byz, 1 + g, where

0

0
Therefore
2pi1=a+ Bozp + e

Zpyo = a + Boa + B(%ZT + (7)) + BOET+1

A 1
zrip=a+Boa+Béa+ --- +Bfla 17

+ BgZT
+ eyt + Boepyp1+ Biepp o+ -+ + By Pep,o+ Bf ler..

Conditional on a, B, and 3, the sum Zp,5 = 20,1 + 2p,.9 + -+ + 2p, g i
Normally distributed with mean and variance given by
town = Ta + (T —1)Bya + (T —2)B2a + --- + Bl 'a
+(By+BZ+ - +Bl)zy,
ESUWL = 2
+ (I +By)2(I + By)'
+ (I +By+B3)3(I+B,+ B3) (19)

(18)

+(I+By+ - +BIT H)ST+By+ --- +BI Y
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For each of the 1,000,000 realizations of the parameters in the sample
from the posterior p(a,B,2|z), we draw one point from the Normal distri-
bution with mean and variance given by the above expressions, thereby giv-
ing a sample of size 1,000,000 from the predictive distribution.

The aim of this section is to understand how predictability in asset re-
turns and parameter uncertainty affect portfolio choice. To do this, we com-
pute optimal allocations using four different choices for the distribution of
future returns. These distributions differ in whether they take into account
predictability and parameter uncertainty. For instance, the investor may
choose to take predictability into account when forecasting returns. He does
so by including the dividend yield in the VAR he uses to forecast returns.
Alternatively, he may ignore the predictability in returns simply by exclud-
ing the dividend yield from the VAR. In this case, the model for returns
reduces to the i.i.d. model of Section II.

So far, this gives two different ways of forecasting future returns. How-
ever, for each of these two ways, there is a further choice to be made. The
investor may account for the parameter uncertainty in the model, and use a
predictive distribution constructed in the manner described earlier. Alterna-
tively, he may ignore the parameter uncertainty in the model; in this case,
we assume that the distributions for future returns are constructed using
the posterior means of a,B, and ¥ given in Table II (or of x and o2 in Table I
if predictability is also ignored) as the fixed values of the parameters, and
then drawing 1,000,000 times from the Normal distribution with mean and
variance given by equations (18) and (19) above. This extra choice about
whether to incorporate parameter uncertainty gives a total of four possibil-
ities for the distribution of future returns.

In Section III.B below, we present optimal portfolio allocations. We eval-
uate the quantity in equation (14) for w ranging from zero to 0.99 in incre-
ments of 0.01, and report the v maximizing this quantity. We do this calculation
for several values of investor risk-aversion A; for several investment hori-
zons, ranging from one year to 10 years at one-year intervals; and for the
four possible distributions for future returns. By comparing how the optimal
portfolios differ depending on which distribution we use for forecasting re-
turns, we can understand how the predictive power of the dividend yield and
parameter uncertainty affect portfolio choice.13

The investor’s distribution for future returns of course depends on the
value of the dividend yield at the beginning of the investment horizon, x; 5.1
If the yield is low, this forecasts low returns, lowering the mean of the dis-
tribution for future returns and reducing the allocation to equities. In our
initial set of results, we abstract from this effect by setting the initial value
of the dividend yield to its mean in the sample, namely x, » = 3.75 percent,
and investigate how the optimal allocation changes with the investor’s ho-

13 The optimal portfolios for the cases where predictability is ignored are computed in Sec-
tion II, so we simply carry those results over to this section.
™ The initial value of the predictor x, ; enters equation (18) through z, = (rp x1.7)".
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rizon for this fixed initial value of the predictor. Later, we look at how the
results are affected when the initial dividend yield takes values above or
below its sample mean.

B. Results

Figure 2 presents the solutions to the allocation problem. Each graph cor-
responds to a different level of risk-aversion. Within each graph, each line
shows the percentage 100w percent allocated to stocks plotted against the
investment horizon ranging from one to 10 years. The four lines on each
graph correspond to the four possible distributions the investor could use to
forecast future returns.'®> All of the computations are based on the full data
sample from 1952 to 1995; results based on the more recent subsample are
presented in Section III.C.

We focus on the graph for a risk aversion level of 10, which presents the
results most clearly. The two lower lines in this graph represent the cases
where the investor ignores predictability, excluding the dividend yield from
the VAR. Of course, in this case, the model for returns simply reduces to the
i.i.d. model discussed in Section II. These two lines are therefore exactly the
same as those in the top right graph in Figure 1.

The main results of this section center on the two upper lines. These two
lines correspond to the cases where the dividend yield is included in the
analysis. The graph shows that when we ignore uncertainty about the model
parameters (the dashed line), the optimal allocation to stocks for a long-
horizon investor is much higher than for a short-horizon investor. When we
take the uncertainty about the parameters into account (the solid line), the
long-horizon allocation is again higher than the short-horizon allocation—
but not nearly as much higher as when we ignore estimation risk. The rest
of this section explores these results in more detail.

We start with the case where parameter uncertainty is ignored. Why does
the allocation to stocks in this case rise so dramatically at long horizons
when the dividend yield is included in the regression?

Recall that when asset returns are modeled as i.i.d., the mean and vari-
ance of cumulative log returns grow linearly with the investor’s horizon 7.
In Section II, we find that this leads to identical allocations to stocks, re-
gardless of the investor’s horizon.

When we acknowledge that returns may be predictable rather than i.i.d.,
this is no longer the case. The variance of cumulative log stock returns may
grow slower than linearly with the investor’s horizon, making stocks look
relatively less risky at longer horizons and hence leading to higher alloca-
tions to stocks in the optimal portfolio.

15 Sometimes, the optimal allocation 100w percent lies outside the (0,100) range for all ho-
rizons between one and 10 years, which is why there may be fewer than four lines on some
graphs.
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Figure 2. Optimal allocation to stocks plotted against the investment horizon in years.
The investor follows a buy-and-hold strategy, uses a VAR model which allows for predictability
in returns, and has power utility W ~4/(1 — A) over terminal wealth. The solid and dotted lines
correspond to cases where the investor accounts for uncertainty in the parameters, the dashed
and dash/dot lines to cases where he ignores it. The solid and dashed lines correspond to cases
where the investor takes into account the predictability in returns, the dotted and dash/dot
lines to cases where he ignores it. The model is estimated over the 1952 to 1995 sample period.

This point can be seen mathematically. Write the regression model in
full as

Tep1 =@+ Bxyy + 81411 (20)
X010 =Y T Px1: T €2 441, (21)
where
€1,¢ 0'12 012
~N|O0,
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The conditional variances of one- and two-period cumulative stock returns
are

varp(rpiq) = of, (22)
varr(reey + regs) = 208 + B2os + 2Bo1s. (23)

For the parameter values estimated from the data, in other words the
posterior means in Table II, 20§ + 2805, < 0, which implies that the con-
ditional variance of two-period returns is less than twice the conditional
variance of one-period returns. When we consider the predictive power of
the dividend yield, conditional variances grow slower than linearly with the
investor’s horizon, lowering the perceived long-run risk of stocks and in-
creasing their optimal weight in the investor’s portfolio.

Some numbers may help to make this point clearer. Table I shows that the
variance of monthly excess stock returns is estimated at 0.0017, implying
a standard deviation of v 0.0017 = 4.12 percent. In a model specifying
i.i.d. returns, this implies a standard deviation for cumulative log excess
returns over 10 years of (0.0412)120 = 45.2 percent. However, the standard
deviation of the distribution for 10-year cumulative log excess returns gen-
erated by an investor who models returns using the VAR in Table II, ignor-
ing parameter uncertainty, is from equation (19) equal to 23.7 percent, much
lower than 45.2 percent! This demonstrates the extent to which conditioning
on the dividend yield can slow the evolution of the variance of cumulative
returns.

The intuition behind this effect is the following: Suppose that the dividend
yield falls unexpectedly. Since o5 < 0, this is likely to be accompanied by a
contemporaneous positive shock to stock returns. However, since the divi-
dend yield is lower, stock returns are forecast to be lower in the future, since
B > 0. This rise, followed by a fall in returns, generates a component of
negative serial correlation in returns which slows the evolution of the vari-
ance of cumulative returns as the horizon grows.

The results obtained here should not be viewed as being specific to the
particular way we have modeled returns, nor to the particular parameter
values estimated from the data. There is a strong economic intuition behind
the general idea that time variation in expected returns induces mean-
reversion in realized returns. If there is a positive shock to expected returns,
it is very reasonable that realized returns should suffer a contemporaneous
negative shock since the discount rate for discounting future cash flows has
suddenly increased. This negative shock to current realized returns, fol-
lowed by the higher returns predicted in the future, are the source of mean-
reversion, which in turn makes stocks more attractive to long-run investors.

While mean-reversion provides a simple way of interpreting our results, it
is important to note that horizon effects can be present even without nega-
tive serial correlation in returns. In other words, the predictability in re-
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turns may be sufficient to make stocks more attractive at long horizons,
without being strong enough to induce mean-reversion in returns. One way
to see this is to note that in our simplified model,

B>¢os

cov(ri,rn) = T3 + Bons (24)
—¢

cov(ry,ryy;) = ¢i_lcov(rtart+1)' (25)

It is straightforward to note that we can choose parameters so that re-
turns are serially uncorrelated at all lags and yet, by equation (23), the
two-period conditional variance is less than twice the one-period conditional
variance. In this situation, a two-period investor would allocate more to stocks
than a one-period investor and yet there is no mean-reversion in returns.

The second important result in Figure 2 is that incorporating parameter
uncertainty can substantially reduce the size of the horizon effect. For A = 10,
ignoring this uncertainty can lead to an overallocation to stocks of more
than 30 percent at a 10-year horizon!

Introducing parameter uncertainty has a number of effects. First, the in-
vestor acknowledges that he is uncertain about the mean stock return. In
exactly the same way as in Section II, incorporating the uncertainty about
the mean makes conditional variances grow more quickly as the horizon
grows, tending to make stocks look more risky. Therefore the allocation to
stocks is lower than in the case where estimation risk is ignored.

The investor also recognizes that the true predictive power of the dividend
yield is uncertain; therefore it is also uncertain whether the dividend yield
really does slow the evolution of conditional variances, and hence whether
stocks really are less risky at long horizons. The investor is therefore again
more cautious about stocks and allocates less to them.1¢

In the absence of estimation risk, we saw that predictability makes stocks
look less risky at long horizons; incorporating the estimation risk makes
them look more risky. These two effects therefore battle it out, leading to
stock allocations that are not necessarily monotonic as a function of the
investment horizon. The solid line in the bottom left graph in Figure 2 shows
that for horizons up to eight years, predictability wins out and the allocation
to stocks rises; from that point on, the line falls slightly, suggesting that
estimation risk has caught up with the investor, making stocks look less
attractive.

16 When the investor takes estimation risk into account, he acknowledges both that the
predictive power of the dividend yield may be weaker than the point estimates suggest—in
which case he would certainly be reluctant to allocate more to stocks at long horizons—and that
it may in fact be stronger, in which case he would be even keener to allocate more to equities
at longer horizons. These effects go in opposite directions; on net, the investor invests less at
long horizons because he is risk-averse and hence dislikes the mean-preserving spread that
accounting for estimation risk adds to the distribution of future returns.
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C. The Role of the Predictor Variable

Up to this point we have focused on just one effect of including the divi-
dend yield as a predictor in the VAR. Conditioning on the dividend yield
reduces the variance of predicted long-horizon cumulative returns, leading
to a higher allocation to stocks for long-horizon investors.

Conditioning on the dividend yield has another, more direct implication
for portfolio allocation. By its very nature as a predictor, the dividend yield
also affects the mean of the distribution for future returns. When the divi-
dend yield is low relative to its historical mean, an investor forecasts lower
than average stock returns and hence reduces his allocation to stocks. This
effect has not been prominent so far in the paper because the initial value of
the dividend yield has been kept fixed at its unconditional mean in the
sample period.

We now repeat the earlier analysis of this section for different initial val-
ues of the dividend yield.!” Figure 3 presents the results. Each graph cor-
responds to a different level of risk aversion. The graphs on the left illustrate
the optimal allocations when parameter uncertainty is ignored; the graphs
on the right incorporate it. Within each graph, we plot the optimal stock
allocation as a function of the investor’s horizon for five different initial
values of the dividend yield. The five values we use are the historical mean
of the dividend yield in our sample, namely x; » = 3.75 percent, and the
values one and two standard deviations on either side of that.!8

Look first at the graphs on the left side of Figure 3. They show that for all
the initial values of the predictor that we consider, the earlier result of this
section continues to hold: The allocation to stocks rises with the investor’s
horizon. Of course, for any fixed horizon, the optimal allocation is higher for
higher values of the dividend yield since the investor expects higher future
returns. For any fixed initial value of the dividend yield, however, the 10-
year allocation is higher than the one-year allocation. Moreover, the optimal
allocation of an investor with a 10-year horizon is just as sensitive to the
initial value of the dividend yield as the optimal allocation of a one-year
horizon investor. In other words, the allocation lines show no sign of
converging.

The picture is remarkably different when the investor properly accounts
for the fact that he is uncertain about the parameters governing asset re-
turns. These results are shown in the graphs on the right-hand side of Fig-
ure 3. For lower initial values of the dividend yield, the optimal allocation
once again rises with the investor’s horizon. For higher values of the pre-
dictor, though, the allocation to stocks falls with the investment horizon.

17 In effect, we are producing optimal portfolio recommendations for an investor who has
observed a hypothetical sample with different x, ; but the same posterior distribution for the
parameters as in the actual sample.

18 For some of the initial values of the dividend yield, the optimal allocation 100w percent
lies outside the (0,100) range for all horizons between one and 10 years. This is why there may
be fewer than five lines on any one graph.
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Figure 3. Optimal allocation to stocks plotted against the investment horizon in years.
The investor follows a buy-and-hold strategy, uses a VAR model which allows for predictability in
returns, and has power utility W 174/(1 — A) over terminal wealth. The three graphs on the left
ignore parameter uncertainty, those on the right account for it. The five lines within each graph
correspond to different initial values of the predictor variable, the dividend yield: d/p = 2.06 per-
cent (solid), d/p = 2.91 percent (dashed), d/p = 3.75 percent (dotted), d/p = 4.59 percent (dash/
dot), and d/p = 5.43 percent (solid). The model is estimated over the 1952 to 1995 sample period.

Another way of looking at this is to note that the allocation lines converge,
resulting in a 10-year allocation that is less sensitive to the initial dividend
yield than the allocation of a one-year investor, and much less sensitive than
the allocation of an investor with a 10-year horizon who ignores estimation
risk. This result is intuitive: If the true forecasting power of the dividend
yield is uncertain, the allocation of a long-horizon investor should be less
sensitive to the initial value of the predictor.

Though Figure 3 shows that the impact of parameter uncertainty is sub-
stantial, its effect can be even more dramatic. Suppose that an investor be-
lieves that the true predictive power of the dividend yield changes over time
and is therefore wary of running a regression over the full 1952 to 1995
period, preferring instead to estimate the relationship over the shorter 10-
year period from 1986 to 1995. The posterior distribution of the VAR pa-
rameters over this data sample is summarized in Table II.
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Figure 4. Optimal allocation to stocks plotted against the investment horizon in years.
The investor follows a buy-and-hold strategy, uses a VAR model which allows for predictability
in returns, and has power utility W ™4/(1 — A) over terminal wealth. The three graphs on the
left ignore parameter uncertainty, those on the right account for it. The five lines within each
graph correspond to different initial values of the predictor variable, the dividend yield: d/p =
2.37 percent (solid), d/p = 2.86 percent (dashed), d/p = 3.36 percent (dotted), d/p = 3.85 percent
(dash/dot), and d/p = 4.35 percent (solid). The model is estimated over the 1986 to 1995 sample
period.

Figure 4 repeats the calculations of Figure 3 for the case where the inves-
tor uses the more recent subsample in making his decisions. Once again, the
optimal allocation rises sharply with the horizon for the investor who takes
the parameters as fixed. When parameter uncertainty is incorporated, how-
ever, the recommended portfolios are completely different! The allocations
for investors with 10-year horizons are now largely insensitive to the initial
value of the predictor: The convergence in the allocation lines, already pro-
nounced in Figure 3, is now much more dramatic. Just as in Figure 3, esti-
mation risk is sometimes so strong as to cause the stock allocation for a
10-year investor to be lower than that for a one-year investor. In this case,
this is even true when the dividend yield is at its sample mean, x, 7 = 3.36
percent!
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Another intriguing result in Figures 3 and 4 is the fact that for a given
investment horizon and risk-aversion level, the optimal stock allocation is
not necessarily increasing in the initial value of the predictor variable. This
is a surprising fact at first sight: If the initial value of the dividend yield is
five percent rather than four percent, the distribution for future returns
forecast by the investor has a higher posterior mean, which should lead to a
higher allocation to the stock index. Moreover, the variance of the distribu-
tion for future returns is insensitive to the initial value of the predictor, so
this cannot explain the nonmonotonicity result. Stambaugh (1999) demon-
strates that it is in fact the third moment of the return distribution, skew-
ness, that is important here. Incorporating parameter uncertainty generates
positive skewness in the predictive distribution for low initial values of the
predictor, and negative skewness for higher initial values. This negative skew-
ness makes stocks less attractive, the higher the dividend yield, and makes
the optimal allocation nonmonotonic in the initial value of the predictor.

A reader trying to interpret the results in Figures 2, 3, and 4 will obvi-
ously be concerned about the accuracy of the numerical methods. As men-
tioned at the end of Section II, the Appendix contains a discussion of simulation
error. We do not dwell on it any more here, other than to say that the results
there suggest that by using 1,000,000 draws in our simulations, we can be
comfortable that the level of accuracy is high.

IV. Dynamic Allocation

To this point we have focused on the buy-and-hold investment problem.
We now examine portfolio choice when the investor optimally rebalances
over his investment horizon. Specifically, consider an investor who is al-
lowed to rebalance annually using the new information at the end of each
year. We analyze how the optimal allocation depends on the investor’s hori-
zon. To begin, we work with the simpler case where parameter uncertainty
is ignored. Then we look at how the results change when the investor incor-
porates parameter uncertainty.

A. An Asset Allocation Framework with Dynamic Rebalancing

We use the same regression model as in Section III, originally introduced
as equation (2) in Section I, with z, = (r, x,)’, where x, = x, , is the dividend
yield. We also maintain the earlier simplification that the continuously com-
pounded real return on T-bills is a constant r, per period. As before, we set
7, = 0.0036 in all our numerical work.

The investor who optimally rebalances his portfolio at regular intervals
faces a dynamic programming problem. To solve this problem, we employ the
standard technique of discretizing the state space and using backward in-
duction. The next few paragraphs formalize this. A

Suppose we are at time 7', and the investor has a horizon 7" months long.
Divide the horizon into K intervals of equal length, [#4,¢,], [¢1,¢5],...[tx—1, k],
where the start and end of the investor’s horizon are t, = T, and tx = T + T,
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respectively. The investor adjusts his portfolio K times over the horizon, at
points (¢g,%q,...,tx_1). The control variables at the investor’s disposal are
(wg,...,wg_1), his allocations to the stock index at times (¢, ...,{x_1) respec-
tively. To make the notation less cumbersome, we write W,, in place of W,, for
the investor’s wealth at time #,, z,, in place of z,,, and x,, in place of x, . The
investor’s problem is then

1-A
%>, (26)

max kK, | ———
to 0 < 1 - A
where max, means that the investor maximizes over all remaining decisions
from time ¢, on, and where

A A

T T

Wk+1 = Wk{(l - wk)exp<rf—> + wkexp<rf— +Rk+1>}7 (27)
K K

Ry, = A T b A e R N R (28)

for # = 0,...,K — 1. Note that the return on T-bills between rebalancing
points is now exp(r/(T/K)) because the full T month horizon is broken into
K intervals. The cumulative excess stock return between rebalancing points
tp and ¢, 1s R, 4.

Define the derived utility of wealth

WI*A
ﬂ%%@ﬂmE<K> (29)
tk " ]. _A

where max, means a maximization over all remaining decisions from time
¢, on. Note that the value function J does not depend on r;, the stock return
over month ¢,, because in our model, the current value of the predictor vari-
able alone characterizes the investment opportunity set. The Bellman equa-
tion of optimality is

J (Wi, xp,t,) = max E, {J (Wyq, %41, k1)) (30)
@,

A simple induction argument shows that derived utility may be written

1-A

W
I (Wixp,ty) = T @i 1), (31)

for A # 1, or in the case of A =1,

J (W, xp,t,) = log(Wy,) + Q(x, 1), (32)
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so that the Bellman equation can be rewritten (for A # 1) as

A A

A A 1-A
Q(x,,t) = mwaxEtk{ [(1 — wk)exp<rf I?) + wkexp<rf X + Rkﬂﬂ
(33)

X Q(xp+1, tk+1)}-

Since we are ignoring estimation risk in this section, the expectation in
equation (33) is taken over the Normal distribution p (R, 1,%,.1/0,%,), con-
ditioned on parameter values fixed at the posterior means in Table II.

The usual technique for solving a Bellman equation, which we adopt here,
is to discretize the state space and then use backward induction. In partic-
ular, we take the interval ranging from three standard deviations below the
historical mean of the dividend yield to three standard deviations above, and
discretize this range with 25 equally spaced grid points, which we write as

Suppose that Q(x,q1,¢,,1) is known for all x, . ; = xk+1, Jj=1,...,25.
Clearly this is true in the last period as @ (xg,tx) = 1, Oxg. Then we can use
equation (33) to obtain Q(xi,ty).

Specifically, for each xk', J = 1,...,25, we draw a large sample
(R};ll,x,ii)l =l from the Normal d1str1but10n P(Rpi1,x14110, xk) and set
Q(xj,t;) equal to

A A

1

1 7 (NI
max;E (1 — wp)exp e + wpexp e + Ryt Q(xk+1,tk+1), (34)

@p, i=1

Of course in general we only know Q(xkﬂ,tkﬂ) for x,,, = xi.1, so we
approximate Q(xkﬂ,tkﬂ) by Q(xkﬂ,tkﬂ), where x],, is the closest element
of the discretized state space to x,,. This calculation gives Q(x7,t;) for all
J=1,...,25. Backward induction through all K rebalancing points eventually
gives Q(x{,ty) and hence the optimal allocations w,.

In the Appendix, we find that using a sample size of I = 1,000,000 from
the distribution for cumulative returns provides a high degree of accuracy,
and we therefore continue to use this sample size here. Another variable
that affects the accuracy of our results is the number of grid points we use
to discretize the state variable. We repeated the calculation of the optimal
portfolio policies with increasingly fine discretizations until the results re-
mained unchanged. The results presented here are for the finest discretiza-
tion tried, namely with 25 grid points.

B. Results

The graphs on the left-hand side of Figure 5 present optimal allocations
for investors with horizons ranging from one to 10 years, who rebalance
optimally every year. Each graph corresponds to a particular risk aversion
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Figure 5. Optimal allocation to stocks plotted against the investment horizon in years.
The investor rebalances optimally once a year, uses a VAR model which allows for predictability
in returns, and has power utility W ™4/(1 — A) over terminal wealth. The three graphs on the
left ignore parameter uncertainty, those on the right account for it. The five lines within each
graph correspond to different initial values of the predictor variable, the dividend yield: d/p =
2.37 percent (solid), d/p = 2.86 percent (dashed), d/p = 3.36 percent (dotted), d/p = 3.85 percent
(dash/dot), and d/p = 4.35 percent (solid). The model is estimated over the 1986 to 1995 sample
period.

level, and within each graph, each line corresponds to a different initial
value of the dividend yield. The data sample used is the more recent sub-
sample from 1986 to 1995; using this shorter sample illustrates the effects of
estimation risk more clearly when we reintroduce it in Section IV.C. Results
are displayed for five different initial values of the predictor: its historical
mean in the sample, and the values one and two standard deviations above
and below that.

The graphs show that for the risk-aversion levels presented here, the re-
sults appear similar to those in the buy-and-hold case in Figure 4, which is
based on the same data sample: The optimal allocation to stocks rises with
the investor’s horizon. Although the results appear similar, the effect driving
them is different. The increase in allocation across horizons for a rebalanc-
ing investor is due to the so-called hedging demands first described by Mer-
ton (1973). In our model, the dividend yield is the state variable governing
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expected returns. As it changes over time, it also changes the investment
opportunity set faced by the investor. Merton shows that investors may want
to hedge these changes by investing in a way that gives them higher wealth
precisely when investment opportunities are unattractive—in other words,
when expected returns are low. Table II shows that shocks to expected re-
turns are reliably negatively correlated with shocks to realized returns; this
makes holding more in stocks an ideal way of hedging against movements in
expected returns.

The results in these graphs should not be seen as obtaining only for the
particular model of stock returns used here, but as holding more generally
whenever expected returns vary. We would expect any state variable posi-
tively related to expected returns to be negatively correlated with realized
stock returns, making stocks a good hedge for that state variable, should
investors choose to hedge.

Kim and Omberg (1996) examine this intertemporal problem analytically
and show that all investors with risk aversion A > 1 will want to hedge in
this way. Hedging against movements in state variables governing expected
returns will be particularly relevant for long-horizon investors; the fact that
these investors, according to Figure 5, hold substantially more in stocks in-
dicates that the effect in the theoretical work of Kim and Omberg is empir-
ically quite large. Kim and Omberg also show that the opposite effect holds
when A < 1. In that case, investors choose to have more wealth when in-
vestment opportunities are good. This makes the hedging demand negative,
with the result that long-horizon investors hold less in equities than those
with a shorter term outlook.

The result that longer-horizon investors hold more in stocks to hedge against
movements in expected returns may no longer hold if the investor has a
broader range of asset classes to choose from. In that case, the best hedge
against the state variable risk may be a portfolio quite different from the
stock index alone. Long-term investors with A > 1 would then hold more of
this hedging portfolio, but not necessarily more in the stock index.

C. Parameter Uncertainty in a Multiperiod Setting

In a dynamic context, parameter uncertainty has two effects. The first
effect is analogous to the one we faced in the buy-and-hold problem. When
calculating the value function in equation (33), the expectation should be
taken over a distribution that incorporates the uncertainty about the pa-
rameters. There is a second effect, however: The uncertainty about the pa-
rameters may change over time. As new data are observed, the investor
updates his posterior distribution for the parameters. Therefore the invest-
ment opportunity set perceived by the investor may change over time not
simply because the dividend yield changes, but because the investor’s beliefs
about the relationship between the dividend yield and stock returns—about
the model parameters—have changed. This new source of variation in the
investment opportunity set may itself generate a hedging demand.
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The effect of “learning” about parameters on portfolio holdings is studied
theoretically by Williams (1977) who notes the possibility of a learning-
based hedging demand. Gennotte (1986) also examines portfolio allocation
with incomplete information, and finds a similar hedging demand, albeit in
a slightly different framework. In his model, the state variable governing
expected returns (which we call x, ,) is unobservable but the predictive power
of the state variable for returns (which we call 8) is known. In our model, of
course, the state variable is taken to be the fully observable dividend yield,
and it is the forecasting power of this variable for returns that is unknown.1?

The papers of Williams (1977) and Gennotte (1986) have analyzed the
incomplete information problem theoretically, and now we attempt to quan-
tify empirically the importance of estimation risk in a dynamic context. This
is a formidable problem. The reason is that the investment opportunity set
is no longer characterized by one variable alone, namely the dividend yield,
but also by variables summarizing the investor’s beliefs about the param-
eters 0 = (a,B,2). Adding in these variables, which might include estimated
means and variances for the posterior distributions of a, B, and 2, dramat-
ically increases the size of the state space, making the dynamic program-
ming problem difficult to solve.

In spite of these difficulties, we are able to make progress. For the simple
i.i.d. model of Section II, we are able to present a full analysis of the effects
of estimation risk, including the issue of learning. We leave this to Sec-
tion IV.C.1. For the remainder of this section, we keep the more general
model, which allows for predictability, and analyze estimation risk with some
simplifying assumptions. The simplification we make is to suppose that al-
though the investor acknowledges that he is uncertain about model param-
eters, he ignores the impact on today’s optimal allocation of the fact that his
beliefs about those parameters may change. In other words, he solves the
dynamic problem assuming that his beliefs about the parameters remain the
same as they are at the start of his investment horizon. These beliefs are
summarized by the posterior distribution calculated conditional only on data
up until the start of his horizon.

As a result of the simplification we make, the investor’s opportunity set is
still described by the dividend yield alone. Hence we can still use equation
(33) to calculate the value function. Since the investor now accounts for pa-
rameter uncertainty, the expectation E, is taken over the predictive distri-
bution p(R,,1,%,.1|x,) rather than over p(R,,,%x,.1/0,x,). The investor
constructs a sample from the predictive distribution by taking a large sam-

19 Although the setup in Gennotte’s model appears different at first sight, the methodology
of this paper can be applied to his case. His model can be estimated on past data, giving a
posterior distribution for the state variable x, , conditional on past data, and hence a predictive
distribution for future returns, incorporating the uncertainty about the state variable.

One difference between Gennotte’s framework and our own is that investors in our economy
eventually learn the true value of B, but Gennotte’s investors never completely learn the ever-
changing state variable. However, even this difference disappears if we extend our model to
allow for an unknown and changing regression coefficient g,.
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ple of 1,000,000 draws from the posterior distribution p(0|z,...z2p)—
conditional only on data up until the horizon start date—and then for each
set of parameter values drawn, makes a draw from p(R,, 1,%,.1/0,%.), a
Normal distribution.20

The graphs on the right-hand side of Figure 5 show the results of this pro-
cedure. Recall that the graphs on the left are for the case where parameter un-
certainty is ignored; presenting the graphs side by side makes the contrast more
striking. Figure 5 demonstrates clearly that when the uncertainty in the pre-
dictive power of the dividend yield is taken into account, the allocation lines
are much flatter and the hedging demands much smaller. Once the investor
acknowledges this uncertainty, he becomes more skeptical about whether the
investment opportunity set really is changing over time, and hence about
whether he really should invest more heavily in stocks as a hedge.

Another result that stands out from the side-by-side comparison of the
graphs in Figure 5 is the reduced sensitivity of the optimal allocation to the
initial value of the dividend yield, once we account for parameter uncer-
tainty. An investor who takes the model parameters as known reacts strongly
to changes in the dividend yield, leading to a wildly gyrating allocation to
stocks over time; as the dividend yield falls for instance, the investor needs
to reduce his allocation to stocks dramatically, according to the graphs on
the left. Once we acknowledge that the predictive power of the dividend
yield is weak, the optimal allocation becomes less sensitive to the predictor,
particularly at long horizons. Changes in portfolio composition occur more
gradually over time.

These results suggest that analyses of dynamic strategies which ignore
estimation risk, such as those in Brennan et al. (1997) and Campbell and
Viceira (1999), may need to be interpreted with some caution. Since they
give the investor no way of incorporating parameter uncertainty into the
decision framework, they may recommend allocations to stocks that are too
high, and too sensitive to the variables parameterizing expected returns.

C.1. Learning

One feature of parameter uncertainty in a dynamic context is that the
degree of uncertainty about the parameters changes over time as more data
are received. If the investor anticipates this learning, it may affect his port-
folio holdings. After all, the investor’s beliefs about the model parameters
determine the perceived investment opportunity set; as these beliefs change,
the opportunity set also changes, and there may be a demand for stocks
based on hedging against such changes.

20 One possible objection to this experiment is that it is oo simple, in that the investor must
at least recognize that the precision of his parameter estimates will improve over time, while
we are keeping the dispersion of the posterior fixed in our calculations. One way to justify this
is to think of it in the context of a more sophisticated model that allows the true parameter to
change over time. In that case, it is no longer true that the posterior becomes tighter as more
data are received; it may, in fact become more dispersed.



Investing for the Long Run when Returns Are Predictable 257

In this section, we demonstrate that learning can indeed affect the in-
vestor’s decisions. To keep the problem tractable, we confine our analy-
sis to the simple i.i.d. model of Section II. However, the results are also
relevant for investors using the more general VAR model of Sections III
and IV21

Suppose then that continuously compounded excess stock index returns r,
are described by equation (11). The continuously compounded real monthly
T-bill return r;, is set equal to 0.0036 as usual. The numbers in Table I
suggest that the main source of parameter uncertainty facing the investor
revolves around the mean excess stock return w. To simplify even further,
we focus exclusively on this source of uncertainty by assuming that o2 is
known and equal to 0.0019.22 .

Suppose we are at time 7. The investor has a horizon of T months, and
rebalances his portfolio every year. How should he allocate his portfolio to-
day, given the uncertainty about the parameter w, and recognizing that he
updates his beliefs about u every year?

Suppose that before observing any data, the investor’s prior beliefs about
the parameter u are diffuse, p(u) o« 1. After observing data r = (r4,...r,), the
investor’s posterior beliefs about the mean stock return are

/.L|7' -~ N(mta‘]t)
1 t
my = 2 r; (35)
t =1
0_2
Vv, = — (36)

The two variables m, and V, summarize the investment opportunity set per-
ceived by the investor. However, V, is a deterministic function of time, so the
state space at time ¢ is fully described by wealth W,, and by m,, the inves-
tor’s beliefs about the mean excess stock return. Using the same framework
and notation as in Section IV.A, define

1-A
Wi > (37)

J (Wi, mp,tr) = Inti-XEtk<n

21 Brennan (1998) also studies learning and portfolio choice in a similar context to ours,
although he uses a methodology quite different from the discrete-time backward induction we
employ here. He works in continuous time and obtains optimal portfolios by applying optimal
filtering theory and then solving a partial differential equation.

22 This is the mean of the posterior distribution for o2 calculated using the subsample of
data from 1986 to 1995. It is taken from Table I.
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The Bellman equation is

J(Wy,my, t,) = H}uaXEtk{J(Wkﬂ,mkﬂ,tk+1)},

and an induction argument shows that we can write

Wkl A
J (Wi, my, t),) =

1 _:4 Q(mk> tk)a

for A # 1, so that the Bellman equation becomes

(38)

(39)

T T 1-A
Q(my,ty) = mmaxEtk{ [(1 — wk)exp(rf I?) + wkexp<rf X + Rkﬂ)]

X Q(mk+1atk+1)}-

The expectation here is taken over p(R, ,|m,). Since

p(Rpiqlmy) = fp(Rk+1|M,mk)p(M\mk)d,U«,
where

',
Rk+1|/*L’mk~N ME)U I_{

o2
wlmy ~ N (my,

we obtain after some algebra,

(=)
7 |7 \K

Rk+1|mkNN mkE:C" I_{+—T
T+ |

()

To solve the Bellman equation, we discretize the state space and use back-
ward induction, in exactly the same way as in Section IV.A. We let the vari-

able m, take 25 discrete values, ranging from zero to 0.013 at equally spaced

(40)

(41)
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intervals, which we call mé,j =1,...,25.23 For each mi,j =1,...,25, we draw
a large sample (R}!;)=] from p(R,,|m,), and set Q(m},t;) equal to

I

1 7 T o V[ @)
max—E (1 — wp)exp T”fE + wzexp rfl? + R4 Q(myi1,ter1), (42)

O

where mseill is the investor’s updated belief about the mean excess stock
return having observed the new data R};ll, and is given by

7
T+(k+1) =
(@) 1 K
miy iy - >

TS T
+(k+1) =
(k1)

:;A R T +R;(eill
T+k< )

T+(k+1)1§ “ (43)

A

m <T+ k(z>> + Ry
k K k+1

A

T+(k+1)T
K

This calculation gives Q(my,t;) for all j = 1,...,25. Backward induction
through all K rebalancing points eventually gives @ (m%,t,) and hence the
optimal allocations w,.

The solid lines in the graphs in Figure 6 present the optimal allocations
for investors with horizons ranging from one to 10 years, and who rebalance
annually. These investors take the uncertainty in the mean stock return u
into account, update their beliefs about u every year, and anticipate learning
more about the parameter over time. The dynamic programming framework
above produces optimal allocations as a function of the state of the world,
m,; for simplicity, in Figure 6 we present the stock allocation when m, =
0.0065, the historical mean excess monthly stock return in the data, which
here is the recent subsample from 1986 to 1995.

The two graphs in Figure 6 correspond to different risk-aversion levels. To
make the effect of parameter uncertainty clearer, we have included in each
graph a dashed line, which shows the optimal allocation that would be cho-

23 In other words, we let the investor’s belief about the mean monthly excess stock return m,,
lie between zero percent and 1.3 percent. The mean excess return in the sample, which from
Table I is 0.0065, lies at the midpoint of this range.
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Figure 6. Optimal allocation to stocks plotted against the investment horizon in years.
The investor rebalances optimally once a year, uses an i.i.d. model for asset returns, and has
power utility W' /(1 — A) over terminal wealth. The dash/dot line corresponds to the case
where the investor ignores parameter uncertainty, the solid line to the case where he accounts
for it. The model is estimated over the 1986 to 1995 sample period.

sen by an investor who ignores the uncertainty in u, taking its value to be
fixed at 0.0065, the posterior mean from Table I. In this case, we know from
the theoretical work of Samuelson (1969) that the optimal allocation does
not depend on the investor’s horizon.

The striking result in Figure 6, also obtained by Brennan (1998), is that
the investor who acknowledges the uncertainty in w allocates less to stocks
at longer horizons. This appears very similar to the buy-and-hold results in
the two lower graphs from Figure 1, which are based on the same sample
period. However, the effect driving them is very different. The decrease in
allocation across horizons for a rebalancing investor is due to Merton-type
hedging demands. At the risk-aversion levels shown in Figure 6, investors
are trying to hedge changes in the state variable m, that governs their in-
vestment opportunities. Since realized stock returns are positively corre-
lated with m,—if realized stock returns are high, the investor raises his
beliefs about the mean stock return m,—holding less in stocks is a simple
way to hedge.

Although we have obtained these results for the i.i.d. model, the lessons
also apply to investors using the full VAR model. Those investors also face
uncertainty about the mean stock return, and they also want to allocate less
to stocks in anticipation of learning more about that mean.

These results suggest that just as in the buy-and-hold case, there are two
effects driving the relative magnitude of short- and long-horizon equity al-
locations. On the one hand, an investor with A > 1 who believes that there
are state variables such as the dividend yield driving expected returns wants
to hold more in stocks at long horizons as a hedging demand. On the other
hand, the presence of estimation risk and the possibility of learning pushes
down the long-horizon allocation relative to the short-run allocation.
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V. Conclusion

The evidence of time-variation in expected returns is among the more in-
triguing empirical findings in finance. To date, very little has been said
about the implications of this feature of asset returns for investors making
portfolio decisions.

This paper addresses this question, using the sensitivity of the optimal
portfolio allocation to the investor’s horizon as a way of thinking about the
effects of predictability. Our analysis shows that sensible portfolio alloca-
tions for short- and long-horizon investors can be very different in the con-
text of predictable returns.

Take first the case where the parameters in the model describing asset
returns are treated as if known with complete precision. In this case, a
buy-and-hold investor invests substantially more in risky equities in the
presence of predictability, the longer his horizon. Time variation in ex-
pected returns induces mean-reversion in returns, slowing the growth of
conditional variances of long-horizon returns. This makes equities appear
less risky at long horizons, and hence more attractive to the investor. In a
dynamic setting with optimal portfolio rebalancing, an investor more risk
averse than a log utility investor would also allocate substantially more to
equities, the longer his horizon. In this case, the higher allocation to equi-
ties provides the investor with a hedge against changes in available invest-
ment opportunities.

Investment advisors often maintain that long-run investors should allo-
cate more aggressively to equities. This view finds little support in a world
with i.i.d. asset returns, a point made forcefully by Samuelson (1969). The
results presented here suggest that time-variation in asset returns may pro-
vide a rationale for practitioners’ recommendations after all.

This conclusion may be too hasty, however. The investor faces substantial
uncertainty about model parameters: In our regression model, both the
intercept—an important component of the mean return on stocks—and the
coefficient on the state variable are estimated imprecisely.

Our results suggest that portfolio calculations can be seriously misleading
if the allocation framework ignores the uncertainty surrounding parameters
such as these. When this source of uncertainty is accounted for, long-horizon
investors in general still allocate more to equities than short-horizon inves-
tors, but the difference is not as large. In some cases, the estimation risk can
be so severe as to make the optimal stock allocation decrease with the in-
vestor’s horizon. Moreover, parameter uncertainty makes the optimal allo-
cation much less sensitive to the current value of the predictor. This suggests
that analyses which ignore estimation risk may lead the investor to take
positions in stocks which are both too large and too sensitive to the predictor.

We have tried to used the simplest possible structure to illustrate our
findings. The framework can be extended, though, to examine other issues
of interest to investors. We could include more assets, such as long-term
government bonds, more predictor variables, and we could introduce varia-
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tion in conditional volatilities as well as conditional means. The model could
also allow for time-variation in the parameters which might magnify the
effects of estimation risk even further. Finally, the methodology in this pa-
per could easily be amended for use in other contexts. There is much evi-
dence of cross-sectional differences in asset returns, based on sorting stocks
by size or book-to-market value. An investor wondering how to allocate his
portfolio in light of this evidence—and the statistical uncertainty that comes
with it—may also benefit from applying the framework in this paper.

Appendix

Here we evaluate the accuracy of the numerical methods used to obtain
optimal portfolio allocations.

In an effort to ensure a high degree of accuracy, we use a very large sam-
ple of 1,000,000 draws from the appropriate distribution when evaluating
the integrals for expected utility. However, there is always the possibility
that even samples of this size do not guarantee sufficient accuracy, and that
using still larger samples would produce different results for the optimal
stock allocation.

To be confident that this is not the case, we do the following check on
simulation error. We calculate expected utility, and hence the optimal allo-
cation, using 10 independent samples of 10,000 draws each from the sam-
pling distribution. We then repeat the calculation, this time using 10
independent samples of 100,000 draws. Finally, we repeat the procedure one
more time, this time using 10 independent samples of 1,000,000 draws, the
sample size actually used for the results presented in the paper.

Figure Al presents the outcome of two such robustness tests. The graph
on the left focuses on optimal allocations for an investor with a horizon of 10
years, risk-aversion A = 5, and who uses an i.i.d. model estimated over the
full sample from 1952 to 1995 in making his decisions. Figure 1 shows that
an investor who ignores parameter uncertainty allocates 69 percent to the
stock index, while an investor who accounts for this uncertainty only invests
58 percent in stocks. How sure can we be about the accuracy of these numbers?

Figure A1l shows the allocations obtained using the 30 independent sam-
ples described above. The first 10 samples contain 10,000 draws each, sam-
ples 11 through 20 contain 100,000 each, and samples 21 through 30 contain
1,000,000 each. The vertical dotted lines are intended to help the reader
interpret the results by showing where one set of samples ends and the
other begins.

Note first that for samples 21 through 30, the optimal allocation obtained
is the same in all 10 independent samples. In other words, for the sample
size actually used in our results, there does not appear to be any significant
variation in the recommended portfolio. Since the variance is so low, it is
likely that we have converged to the portfolio that would be obtained if we
could perform the integrations exactly.
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Figure Al. Computed optimal allocation for 30 independent samples from the distri-
bution for future returns. Samples one through 10 contain 10,000 draws, samples 11 through
20 contain 100,000 draws, and samples 21 through 30 contain 1,000,000 draws. The graph on
the left is for a buy-and-hold investor with risk aversion A = 5, a horizon of 10 years, and who
uses an i.i.d. model for returns, estimated over the 1952 to 1995 period. The graph on the right
is for a buy-and-hold investor with risk aversion A = 10, a horizon of 10 years, and who uses the
VAR model for returns, estimated over the 1986 to 1995 period. The initial value of the dividend
yield is 2.37 percent. The upper line ignores estimation risk, the lower line accounts for it.

One caveat to this is that the variance of the estimate of the optimal
portfolio may fall faster than its bias. Though we cannot rule this possibility
out completely, the portfolios obtained using samples one through 20 suggest
that it is unlikely. Those samples contain fewer draws from the sampling
distribution, so naturally there is more variation in the computed optimal
portfolios. However, of more interest is the fact that the “distribution” of
recommended portfolios seems to be centered at the same point, whether we
use 10,000 draws, 100,000 draws, or 1,000,000 draws. There does not seem
to be much evidence of bias in the estimate of the optimal portfolio.

The graph on the right presents another example, this time focusing on
the optimal allocation of an investor with a horizon of 10 years and risk
aversion A = 10, who uses the VAR model of Section III. Suppose that this
investor uses only the recent subsample of data from 1986 to 1995 to judge
the predictability in returns, and that the initial dividend yield is x, = 2.37
percent, two standard deviations below the average in the sample. Figure 4
shows that if this investor ignores estimation risk, he allocates 53 percent to
stocks, but only 20 percent if he incorporates it. From the graph in Fig-
ure Al, we see that once again the recommended portfolio allocation is the
same across all samples of 1,000,000 draws, suggesting that we are very
close to the exact optimal portfolio.
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